• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 45, Pages: 3346-3353

Original Article

Microstructure, Tensile and Compression Behaviour of AlSi10Mg Alloy Developed by Direct Metal Laser Sintering

Received Date:30 September 2021, Accepted Date:12 December 2021, Published Date:22 December 2021

Abstract

Objective: To evaluate the tensile and compression behaviour of Al-Si10-Mg alloy developed by selective laser melting (SLM) process. Method: Al-Mg10-Si alloy developed by SLM process along XY (45°) and Z (90°) orientations. These prepared samples were subjected to microstructural characterization by SEM and EDS. Mechanical properties like tensile and compression behaviours were evaluated according to ASTM standards. Findings: Microstructural studies revealed the effect of grains on the mechanical behaviour of Al-Mg10-Si alloy built in XY (45°) and Z (90°) orientations. EDS analysis confirmed the presence of Mg and Si elements in the Al matrix. Tensile strength of Al-Mg10-Si alloy built in XY (45°) orientation is 428.6 MPa against 408.3 MPa in Z (90°) orientations developed samples. Further, compression strength of samples developed in XY (45°) orientation is more than that of developed in Z (90°) orientations. Novelty: In the current study Al-Mg10-Si alloy samples were produced by selective laser meting method in XY (45°) and Z (90°) orientations. Very minimal investigations were carried out on Al-Mg10-Si alloy specimens built in XY (45°) orientation. Keywords: AlMg10Si Alloy; Microstructure; Tensile Behaviour; Compression Strength; Build Orientation

References

  1. Matti S, Siddesh, Shivakumar BP, Shashidhar S. Dry sliding wear behavior of mica, fly ash and red mud particles reinforced Al7075 alloy hybrid metal matrix composites. Indian Journal of Science and Technology. 2021;14(4):310–318. doi: 10.17485/IJST/v14i4.2081
  2. Konda Gokuldoss P. Selective laser melting: Materials and applications. Journal of Manufacturing and Materials Processing. 2020;4(13). doi: 10.3390/jmmp4010013
  3. Sert E, Hitzler L, Hafenstein S. Tensile and compressive behaviour of additively manufactured AlSi10Mg samples. Prog Addit Manuf. 2020;5:305–313. doi: 10.1007/s40964-020-00131-9
  4. Ponnusamy P, Rahman Rashid RA, Masood SH, Ruan D, Palanisamy S. Mechanical Properties of SLM-Printed Aluminium Alloys. A Review. Materials. 2020;13:4301. doi: 10.3390/ma13194301
  5. Zhong-Hua Li YF, Nie B, Liu ZZ, Kuai M, Zhao F, Liu. Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting. Materials & Design. 2020;19. doi: 10.1016/j.matdes.2020.108709
  6. Yan Q, Song B, Shi Y. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. Journal of Materials Science & Technology. 2020;41(0):199–208. doi: 10.1016/j.jmst.2019.08.049
  7. Gu XH, Zhang JX, Fan XL, Zhang LC. Corrosion Behavior of Selective Laser Melted AlSi10Mg Alloy in NaCl Solution and Its Dependence on Heat Treatment. Acta Metallurgica Sinica (English Letters). 2019;33(3):327–337. doi: 10.1007/s40195-019-00903-5
  8. Lachmayer R, Zghair C, Klose F, Nurnberger. Introducing selective laser melting to manufacture machine elements. International Design Conference. 2016;p. 831–842.
  9. Hartunian P, Eshraghi M. Effect of Build Orientation on the Microstructure and Mechanical Properties of Selective Laser-Melted Ti-6Al-4V Alloy. Journal of Manufacturing and Materials Processing. 2018;2(4):69. doi: 10.3390/jmmp2040069
  10. Calignano F, Lorusso M, Roppolo I, Minetola P. Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing. Machines. 2020;8(3):52. doi: 10.3390/machines8030052
  11. Kempen K, Thijs L, Van Humbeeck JP, Kruth JP. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting. Physics Procedia. 2012;39:439–446. doi: 10.1016/j.phpro.2012.10.059
  12. Dama K, Prashanth L, Nagaral M, Mathapati R, Hanumantharayagouda MB. Microstructure and Mechanical Behavior of B4C Particulates Reinforced ZA27 Alloy Composites. Materials Today: Proceedings. 2017;4(8):7546–7553. doi: 10.1016/j.matpr.2017.07.086
  13. Pankaj R Jadhav BR, Sridhar M, Nagaral, Harti. Evaluation of mechanical properties of B4C and graphite particulates reinforced A356 alloy hybrid composites. Materials Today: Proceedings. 2017;4(9):9972–9976. doi: 10.1016/j.matpr.2017.06.304
  14. Blakey Milner B, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E, et al. Anton du Plesis. Metal additive manufacturing in aerospace: A review. Materials & Design. 2021;110008:209. doi: 10.1016/j.matdes.2021.110008

Copyright

© 2021 Prasad et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.