• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 37, Pages: 3129-3138

Original Article

MRI Brain Tumor Prediction using Azure Streamlit Framework and Analysis of CNN Activation Functions

Received Date:25 February 2023, Accepted Date:29 August 2023, Published Date:09 October 2023


Objective: The present research work is focused on brain tumor classification, prediction and to increase the performance to locate the tumor region. Methods: A two-dimensional Convolutional Neural Network (CNN) model is proposed to classify the Magnetic Resonance Images (MRI) into tumor and nontumor categories. The method is applied on a collected dataset consisting of 2056 MRI images. The model is implemented in Python with hyperparameter tuning and activation functions.Findings: In this paper, ReLU and LeakyReLU activation functions are applied with several optimizers. The analysis of the implemented results has been used to gauge performance accuracy. The computed results achieve 99.51% accuracy for predicting the brain tumor using LeakyReLU with Adam optimizer. Novelty: The proposed model provides quick, and accurate approach to classify patients by setting hyperparameter tuning parameters which helps to the doctor to detect patients suffering with tumor and the entire process reduces the computation time.

Keywords: Convolutional Neural Network (CNN); Magnetic Resonance Image (MRI); Digital Imaging and Communications in Medicine (DICOM); Brain Tumor; Deep Learning


  1. Castiglioni I, Rundo L, Codari M, Leo GD, Salvatore C, Interlenghi M, et al. AI applications to medical images: From machine learning to deep learning. Physica Medica. 2021;83:9–24. Available from: https://doi.org/10.1016/j.ejmp.2021.02.006
  2. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology. 2021;23(8):1231–1251. Available from: https://doi.org/10.1093/neuonc/noab106
  3. Zaccagna F, Grist JT, Quartuccio N, Riemer F, Fraioli F, Caracò C, et al. Imaging and treatment of brain tumors through molecular targeting: Recent clinical advances. European Journal of Radiology. 2021;142:109842. Available from: https://doi.org/10.1016/j.ejrad.2021.109842
  4. Pálsson S, Cerri S, Poulsen HS, Urup T, Law I, Leemput KV. Predicting survival of glioblastoma from automatic whole-brain and tumor segmentation of MR images. Scientific Reports. 2022;12(1):19744. Available from: https://doi.org/10.1038/s41598-022-19223-3
  5. Ayadi W, Elhamzi W, Charfi I, Atri M. Deep CNN for Brain Tumor Classification. Neural Processing Letters. 2021;53(1):671–700. Available from: https://doi.org/10.1007/s11063-020-10398-2
  6. Tahia T, Sraboni S, Punit G, Ibn F, Sumaia A, I, et al. A Robust and Novel Approach for Brain Tumor Classification Using Convolutional Neural Network. Computational Intelligence and Neuroscience. 2021. Available from: https://doi.org/10.1155/2021/2392395
  7. Mzoughi H, Njeh I, Wali A, Slima MB, Benhamida A, Mhiri C, et al. Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification. Journal of Digital Imaging. 2020;33(4):903–915. Available from: https://doi.org/10.1007/s10278-020-00347-9
  8. Saleh A, Sukaik R, Abu-Naser SS. Brain Tumor Classification Using Deep Learning. 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech). 2020;p. 131–136. Available from: https://doi.org/10.1109/iCareTech49914.2020.00032
  9. Sarang S, Sheifali G, Deepali G, Abhinav J, Harsh K, Sapna M, et al. Deep Learning Model for Automatic Classification and Prediction of Brain Tumor. Journal of Sensors. 2022. Available from: https://doi.org/10.1155/2022/3065656
  10. Amin J, Sharif M, Gul N, Yasmin M, Shad SA. Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recognition Letters. 2020;129:115–122. Available from: https://doi.org/10.1016/j.patrec.2019.11.016
  11. Roy SS, Rodrigues N, Taguchi YH. Incremental Dilations Using CNN for Brain Tumor Classification. Applied Sciences. 2020;10(14):4915. Available from: https://doi.org/10.3390/app10144915
  12. Abhiral D, Atharva P, Tejas P, Santhosh P, Bhoyar RS. Brain Tumor Detection: Model and Analysis. International Journal of Innovative Research in Technology. 2022;8(9):258–264. Available from: https://ijirt.org/master/publishedpaper/IJIRT153950_PAPER.pdf
  13. Ruchita R, Rais A. Brain Tumor Detection Using Deep Neural Network and Machine Learning Algorithm. Palarch’s. Journal of Archaeology of Egypt/Egyptology. 2021;18(8). Available from: https://archives.palarch.nl/index.php/jae/article/view/8814
  14. Wang H, Song T, Wang L, Yan L, Han L. Fuzzy C-Means Algorithm-Based ARM-Linux-Embedded System Combined with Magnetic Resonance Imaging for Progression Prediction of Brain Tumors. Computational and Mathematical Methods in Medicine. 2022;p. 1–10. Available from: https://doi.org/10.1155/2022/4224749
  15. Qureshi SA, Raza SEA, Hussain L, Malibari AA, Nour MK, Rehman AU, et al. Intelligent Ultra-Light Deep Learning Model for Multi-Class Brain Tumor Detection. Applied Sciences. 2022;12(8):3715. Available from: https://doi.org/10.3390/app12083715
  16. Sugandha S, Vipin S. Interpolation Method for Identification of Brain Tumor from Magnetic Resonance Images. International Journal of Engineering and Manufacturing. 2023;p. 40–51. Available from: https://www.mecs-press.org/ijem/ijem-v13-n2/IJEM-V13-N2-5.pdf
  17. Saeedi S, Rezayi S, Keshavarz H, Kalhori SRN. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making. 2023;23(1). Available from: https://doi.org/10.1186/s12911-023-02114-6
  18. Jasmine P, Sivarani TS. Computer aided diagnosis of brain tumor using novel classification techniques. Journal of Ambient Intelligence and Humanized Computing. 2021;12:7499–7509. Available from: https://doi.org/10.1007/s12652-020-02429-6
  19. Sasikala E, Kanmani P, Gopalakrishnan R, Radha R. RETRACTED ARTICLE: Identification of lesion using an efficient hybrid algorithm for MRI brain image segmentation. Journal of Ambient Intelligence and Humanized Computing. 2022;13(9):4571. Available from: https://doi.org/10.1007/s12652-021-03060-9
  20. Gu X, Shen Z, Xue J, Fan Y, Ni T. Brain Tumor MR Image Classification Using Convolutional Dictionary Learning With Local Constraint. Frontiers in Neuroscience. 2021;15:679847. Available from: https://doi.org/10.3389/fnins.2021.679847


© 2023 Saxena et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.