• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 22, Pages: 1665-1675

Original Article

Multi Variate Feature Extraction and Feature Selection using LGKFS Algorithm for Detecting Alzheimer’s Disease

Received Date:26 March 2023, Accepted Date:18 May 2023, Published Date:07 June 2023


Objectives: This study focuses on machine learning techniques to classify various stages of Alzheimer’s Disease(AD). Methods: Absolutely, 1,997 PD weighted Resting State Functional MRI (rsFMRI) images were acquired from ADNI-3 dataset for the classification of AD. First, input rsFMRI images from the dataset were preprocessed and segmented. After segmentation, we have extracted multi variate features. Then, we have proposed Lasso with Graph Kernel Feature Selection (LGKFS) algorithm for selecting the best features. Finally, Radom Forest algorithm is applied to perform multi class classification for classifying all the stages of AD. Findings: In order to find the accuracy of this approach, cross validations were performed in the ADNI 3 dataset. We have measured the accuracy of RF classifier using three feature selection algorithms. The RF classifier with LASSO achieved 79.94% accuracy, 79.31% precision, 79.69% recall and 79.48% F1 score. The RF classifier with GK-FS achieved 76.52% accuracy, 84.0% precision, 79.19% recall and 79.77% F1 score respectively. By using our LGKFS algorithm, 90.8% accuracy, 82.4% precision ,81.6% recall and 81.6% F1 score was achieved by RF classifier which is higher than the existing feature selection techniques such as LASSO and GK-FS. Novelty: In this, a new hybrid feature selection algorithm namely LGKFS algorithm is introduced which combines two well-known feature selection algorithms Lasso Regression and GK-FS algorithm to improve classification accuracy.

Keywords: Alzheimer disease; Feature Extraction; Feature Selection Machine Learning; Mild Cognitive Impairment; Statistical Parameter Mapping


  1. Andrei G, Dragomir. A Network Based Perspective in Alzheimer’s disease: Current state and an Integrative Framework. IEEE Journal of Biomedical and Health Informatics. 2019(1):14–25. Available from: https://doi.org/10.1109/JBHI.2018.2863202
  2. Alzheimer’s Disease Facts and Figures . Alzhemers Dement. 2022;2022:327–406. Available from: https://doi.org/10.1002/alz12328
  3. Rallabandi VPS, Tulpule K, Gattu M. Automatic classification of cognitively normal, mild cognitive impairment and Alzheimer's disease using structural MRI analysis. Informatics in Medicine Unlocked. 2020;18(2):100305. Available from: https://doi.org/10.1016/j. imu2020.100305
  4. Guo H, Li Y, Mensah GK, Xu Y, Chen J, Xiang J, et al. Resting-State Functional Network Scale Effects and Statistical Significance-Based Feature Selection in Machine Learning Classification. Computational and Mathematical Methods in Medicine. 2019;2019:1–18. Available from: https://doi.org/10.1155/2019/9108108
  5. Shi Y, Zeng W, Deng J, Nie W, Zhang Y. The Identification of Alzheimer’s Disease Using Functional Connectivity Between Activity Voxels in Resting-State fMRI Data. IEEE Journal of Translational Engineering in Health and Medicine. 2020;8:1–11. Available from: https://doi.org/10.1109/JTEHM.2020.2985022
  6. Fasal U, Faisal URR, Khatri. Goo Rak Kwon, Diagnosis of Alzheimer’s disease using combined feature selection method. Journal of korea multimedia society. 2021;2021(5):667–675. Available from: https://doi.org/10.9717/kmms.2021.24.5.667
  7. Rani KEE, Baulkani S. Nisan Pranavah Raja. Machine Learning Approach for Automatic Detection of Alzheimer’s Disease using Resting State fMRI. International Journal for Research in Applied Science & Engineering Technology (IJRASET). 2021;p. 5399–5409. Available from: https://doi.org/10.22214/ijraset.201.36170
  8. Duc NT, Ryu S, Qureshi M, Choi M, Lee KH, Lee B. 3D-Deep Learning Based Automatic Diagnosis of Alzheimer's Disease with Joint MMSE Prediction Using Resting-State fMRI. Neuroinformatics. 2020. Available from: https://doi.org/10.1007/s12021-019-09419-w
  9. Reddy G, Bose M, Krishna K, Reddy M, AK. Transfer Learning-Based Approach for Early Detection of Alzheimer's Disease. International Journal of Scientific Research in Science, Engineering and Technology. 2022;p. 248–254. Available from: https://doi.org/10.32628/IJSRSET229242
  10. Feng G, Songhua M, Xiude W, Jian Z, Ying Y, Jian SX. Evaluation of feature Selection for Alzheimer’s disease diagnosis,. Available from: https://doi.org/10.3389/fnagi.2022.924113
  11. Zadeh A, Gharehchopogh B, FS. A multi objective optimization algorithm for feature selection problems. Engineering with computers. 2022(3):1845–1863. Available from: https://doi.org/10.1007/s00366-021-01369-9
  12. Hojjati SH, Ebrahimzadeh A, Babajani-Feremi A. Identification of the Early Stage of Alzheimer's Disease Using Structural MRI and Resting-State fMRI. Frontiers in Neurology. 2019;10(10):904. Available from: https://doi.org/10.3389/fneur.2019.00904
  13. Yamada M, Jitkrittum W, Sigal L, Xing EP, Sugiyama M. High dimensional feature selection by Feature wise kernelized Lasso. Neural Comput. 2019;p. 185–207. Available from: https://doi.org/10.48550/arXiv.1202.0515
  14. Yuanyuan LL, Zhouxuan G, Qiyang L, Nan, Xiong M. Deep feature selection and casual analysis of Alzheimer’s disease. 2019. Available from: https://doi.org/10.3389/fnins.2019.01198
  15. John A, Barnes G, Chen CC, Guillaume JD, F, Stefan KF, et al. SPM12 Manual: welcome trust center for neuroimaging. Available from: https:/www.fil.ion.ucl.ac.ul/spm/
  16. Du B, Cao S, Liu Y, Wei Q, Zhang J, Chen C, et al. Abnormal Degree Centrality in White Matter Hyperintensities: A Resting-State Functional Magnetic Resonance Imaging Study. Frontiers in Psychiatry. 2021;12. Available from: https://doi.org/10.3389/fpsyt.2021.684553


© 2023 Rani & Baulkani. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.