• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 11, Pages: 839-849

Original Article

New Odoma Distribution with Application to Cancer Data

Received Date:12 December 2022, Accepted Date:25 January 2023, Published Date:20 March 2023


Objective: To find appropriate model more flexible than classical models for fitting the survival data in health research especially in cancer blood (Leukemia) studies by introducing some additional parameters to the basic models. Methods: Based on the Alpha Power transformation technique and using Two-Parameter Odoma distribution, the new distribution called the Alpha Power Two- Parameter Odoma distribution is introduced and studied. The maximum likelihood estimation procedure is employed to estimate the unknown parameters. A simulation study is carried out to evaluate the performance of the maximum likelihood estimators. Finding: Common statistical properties such as quantile function, rth moments, moment generating function, characteristic function, incomplete moments, entropy and order statistics are derived. The practical importance of the proposed model is illustrated by using goodness-of-fit criterias based on real data set.  The APTPO distribution is the most appropriate model for fitting survival data Novelty:of cancer studies comparing with other competitive distributions.

Keywords: TwoParameter Odoma Distribution; Alpha Power Transformation; Quantile; Moments; Maximum Likelihood Estimation


  1. Edith UU, Ebele TU, Henrietta AI. A Two-parameter Rama Distribution. Earthline Journal of Mathematical Sciences. 2019;2(2):365–382. Available from: https://doi.org/10.34198/ejms.2219.365382
  2. Hassan A, Dar SA, Ahmad PB, Para BA. A new generalization of Aradhana distribution: Properties and applications. Journal of Applied Mathematics, Statistics and Informatics. 2020;16(2):51–66. Available from: https://www.researchgate.net/publication/346630241_A_NEW_GENERALIZATION_OF_ISHITA_DISTRIBUTION_PROPERTIES_AND_APPLICATIONS
  3. Rajagopalan V, Ganaie RA, Nair SR. A New Extension of Two Parameter Pranav Distribution with Applications in Industrial and Medical Sciences. Journal of Statistics Applications & Probability. 2023;12(1):231–246. Available from: http://dx.doi.org/10.18576/jsap/120122
  4. Enogwe SU, Nwosu DF, Ngome EC, Onyekwere CK, Omeje IL. Two-parameter Odoma distribution with applications. Journal of Xidian University. 2020;14(8):740–764. Available from: https://doi.org/10.37896/jxu14.8/079
  5. Al-Meanazel ATR, AK, AM. Poisson-Odoma Distribution. An International Journal of Statistics Applications and Probability. 2022;(1) 155–161. Available from: https://www.researchgate.net/publication/356587968_Poisson_Odoma_Distribution
  6. Mohamed EM, Gauss MC, Ahmed ZA, Hazem AM. The Alpha Power transformation family : properties and applications. Pakistan Journal of Statistics and Operation Research. 2019;(3) 525–545.
  7. Hassan AS, Elgarhy M, Mohamd RE, Alrajhi S. On the Alpha Power Transformed Power Lindley Distribution. Journal of Probability and Statistics. 2019;2019:1–13. Available from: https://downloads.hindawi.com/journals/jps/2019/8024769.pdf
  8. Nassar M, Dey S, Kumar D. Alpha power transformed inverse lindley distribution: A distribution with an upside-down bathtub-shaped hazard function. Journal of Computational and Applied Mathematics. 2019;348:130–145. Available from: https://www doi.org/10.1016/j.cam.2018.03.037
  9. Basheer AM. Alpha power inverse Weibull distribution with reliability application. Journal of Taibah University for Science. 2019;13(1):423–432. Available from: https://doi.org/10.1080/16583655.2019.1588488
  10. Nasiru S, Mwita PN, Ngesa O. Alpha Power Transformed Frechet Distribution . Applied Mathematics & Information Sciences. 2019;13(1):129–141. Available from: https://www.naturalspublishing.com/files/published/i36f58377srnzs.pdf
  11. Ramadan A, Eldin Z, Haq MAU, Hashmi S, El-Sehety M. Alpha power transformed inverse Lomax distribution with different methods of estimation. Journal of Probability and Statistics. 2020;p. 1–15. Available from: https://www doi.org/10.1155/2020/1860813
  12. Sakthivel KM, Chezhian AA. Alpha power transformed Pareto distribution and its properties with applications. Malaya Journal of Mathematik. 2020. Available from: https://www doi.org/10.26637/MJM0S20/0011
  13. Maryam M, Kannan R. On the alpha power transformed Aradhana distribution: its properties and application. Indian Journal of Science and Technology. 2021;(30) 2483–2493. Available from: https://doi.org/10.17485/IJST/v14i30.598
  14. Mohiuddin M, Kannan R, Alrashed AA, Fasil M. A New Generalization of Pranav Distribution with Application to Model Real Life Data. Journal of Statistics Applications & Probability. 2022;11(3):991–1011. Available from: http://dx.doi.org/10.18576/jsap/110321
  15. Anwar H, Sameer AW, Sumeera S, Showkat AD. Transmuted Quasi Akash distribution Applicable to Survival Times Data. Thailand Statistician. 2022;(2) 338–356. Available from: https://www.researchgate.net/publication/359512938esc=publicationCoverPdf


© 2023 Abdelall. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.