• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 7, Pages: 651-659

Original Article

Non-invasive Primary Screening of Oral Lesions into Binary and Multi Class using Convolutional Neural Network, Stratified K-fold Validation and Transfer Learning

Received Date:31 October 2023, Accepted Date:22 January 2024, Published Date:14 February 2024


Objectives: To develop a deep learning method using camera images that can effectively detect the preliminary phase of oral cancer, which has a high rate of morbidity and mortality and is a significant public health concern. If left untreated, it can result in severe deformities and negatively affect the patient's quality of life, both physically and mentally. Early detection is crucial owing to the rapid spread of the disease, where biopsy is the only option left. Therefore, it is essential to identify malignancies swiftly to prevent disease progression non-invasively. Methods: Three different scenarios are used in this study to analyze samples: CNN architecture, stratified K-fold validation, and transfer learning. For automated disease identification on binary datasets (normal vs. ulcer) and multiclass datasets (normal vs. ulcer vs. Leukoplakia), camera images are pre-processed with data augmentation. As a feature extractor in the model, transfer learning is used with pre-defined networks such as VGG19, InceptionNET, EfficientNET, and MobileNET weights. Findings: Using the proposed CNN architecture, the F1 score for image classification was 78% and 74% for photos showing hygienic mouths or ulcers, and 83%, 87%, and 84% for images showing normal mouths, ulcers, and leukoplakia. Using stratified 3-fold validation, the results were improved to 97%, and an EfficientNET achieves the highest results in a binary F1 score of 98% and a classification with multiple classes F1 scores of 98%, 87%, and 91%, respectively. Novelty: Previous studies have mostly concentrated on differentiating oral potentially malignant diseases (OPMD) from oral squamous cell carcinoma (OSCC) or on discriminating between cancerous and non-cancerous tissues. The objective is to diagnose patients with non-invasive procedures to classify ulcers, healthy mouths, or precancerous type "Leukoplakia" without requiring them to visit a doctor.

Keywords: CNN, Transfer Learning, Oral Cancer, Ulcer, Leukoplakia, Stratified K-­fold validation


  1. Mouth ulcer. NHS inform. Available from: https://www.nhsinform.scot/illnesses-and-conditions/mouth/mouth-ulcer (accessed )
  2. Fu Q, Chen Y, Li Z, Jing Q, Hu C, Liu H, et al. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study. eClinicalMedicine. 2020;27:1–7. Available from: https://doi.org/10.1016/j.eclinm.2020.100558
  3. Welikala R, Remagnino P, Lim J, Chan C, Rajendran S, Kallarakkal T, et al. Automated Detection and Classification of Oral Lesions Using Deep Learning for Early Detection of Oral Cancer. IEEE Access. 2020;8:132677–132693. Available from: https://doi.org/10.1109/ACCESS.2020.3010180
  4. Shamim MZM, Syed S, Shiblee M, Usman M, Ali SJ, Hussein HS, et al. Automated Detection of Oral Pre-Cancerous Tongue Lesions Using Deep Learning for Early Diagnosis of Oral Cavity Cancer. The Computer Journal. 2022;65(1):91–104. Available from: https://doi.org/10.1093/comjnl/bxaa136
  5. Panigrahi S, Nanda BS, Bhuyan R, Kumar K, Ghosh S, Swarnkar T. Classifying histopathological images of oral squamous cell carcinoma using deep transfer learning. Heliyon. 2023;9(3):1–14. Available from: https://doi.org/10.1016/j.heliyon.2023.e13444
  6. Das M, Dash R, Mishra SK. Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network. International Journal of Environmental Research and Public Health. 2023;20(3):1–21. Available from: https://doi.org/10.3390/ijerph20032131
  7. Badawy M, Balaha HM, Maklad AS, Almars AM, Elhosseini MA. Revolutionizing Oral Cancer Detection: An Approach Using Aquila and Gorilla Algorithms Optimized Transfer Learning-Based CNNs. Biomimetics. 2023;8(6):1–35. Available from: https://doi.org/10.3390/biomimetics8060499
  8. Xu S, Liu Y, Hu W, Zhang C, Liu C, Zong Y, et al. An Early Diagnosis of Oral Cancer based on Three-Dimensional Convolutional Neural Networks. IEEE Access. 2019;7:158603–158611. Available from: https://doi.org/10.1109/ACCESS.2019.2950286
  9. Bhandari B, Alsadoon A, Prasad PWC, Abdullah S, Haddad S. Deep learning neural network for texture feature extraction in oral cancer: enhanced loss function. Multimedia Tools and Applications. 2020;79(37-38):27867–27890. Available from: https://doi.org/10.1007/s11042-020-09384-6
  10. Sumida I, Magome T, Kitamori H, Das IJ, Yamaguchi H, Kizaki H, et al. Deep convolutional neural network for reduction of contrast-enhanced region on CT images. Journal of Radiation Research. 2019;60(5):586–594. Available from: https://doi.org/10.1093/jrr/rrz030
  11. Shah R, Pareek J. Pretreatment Identification of Oral Leukoplakia and Oral Erythroplakia Metastasis Using Deep Learning Neural Networks. In: International Conference on Computer Vision and Image Processing- CVIP 2021, Communications in Computer and Information Science. (Vol. 1567, pp. 306-315) Springer, Cham. 2022.
  12. Islam MM, Alam KMR, Uddin J, Ashraf I, Samad MA. Benign and Malignant Oral Lesion Image Classification Using Fine-Tuned Transfer Learning Techniques. Diagnostics. 2023;13(21):1–15. Available from: https://doi.org/10.3390/diagnostics13213360
  13. Guo J, Wang H, Xue X, Li M, Ma Z. Real‐time classification on oral ulcer images with residual network and image enhancement. IET Image Processing. 2022;16(3):641–646. Available from: https://doi.org/10.1049/ipr2.12144
  14. Zhou M, Jie W, Tang F, Zhang S, Mao Q, Liu C, et al. Deep learning algorithms for classification and detection of recurrent aphthous ulcerations using oral clinical photographic images. Journal of Dental Sciences. 2024;19(1):254–260. Available from: https://doi.org/10.1016/j.jds.2023.04.022


© 2024 Shah & Pareek. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.