• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 34, Pages: 3572-3585

Original Article

Non-Unitarity in Neutrino mixing matrix and two and three flavored non resonant Leptogenesis from CP violation

Received Date:17 May 2020, Accepted Date:18 August 2020, Published Date:23 September 2020

Abstract

Background/Objectives: We will study the effects of non-unitarity parameters from existing experimental constraints, on cLFV decays such as, μ →eγ, μ →τγ, τ →eγ, on generation of baryon asymmetry through leptogenesis and neutrino oscillation probabilities. Considering flavor effects in leptogenesis, we do a parameter scan of a minimal seesaw model in a type I Seesaw framework satisfying Planck data on baryon to photon ratio of the Universe, which lies in the interval, 5.8×10 10 <YB < 6.6×10 10(BBN). We predict values of lightest neutrino mass, and Dirac and Majorana CP violating phase δCP, α and β, for normal hierarchy and inverted hierarchy for one, two and three flavor leptogenesis regimes. It is worth mentioning that all these four quantities are unknown yet, and future experiments will be measuring them. Methods/Statistical analysis: In spite of several experimental verifications of neutrino oscillations and precise measurements of two mass squared differences and the three mixing angles, the unitarity of the leptonic mixing matrix is not yet established, leaving room for the presence of small non unitarily effects. We study their effects on generation of baryon asymmetry through leptogenesis. Considering flavor effects in leptogenesis, we do a parameter scan of a minimal seesaw model in a type I Seesaw framework satisfying Planck data on baryon to photon ratio of the Universe, which lies in the interval, 5.8 × 10−10 < YB < 6.6 × 10−10(BBN). Findings: We predict values of lightest neutrino mass, for normal hierarchy and inverted hierarchy for two and three flavor leptogenesis regimes. It is worth mentioning that all these four quantities, lightest neutrino mass, and Dirac and Majorana CP violating phase δCP, α and β, are unknown yet, and future experiments will be measuring them. Novelty/Applications: Unitarity in UPMNS matrix is not yet established, and hence it has left scope for testing non unitarity in the leptonic sector which will result in various implications of New Physics theories in predicting the values of leptonic CPV phase, δCP, Majorana phases, α, β and the absolute value of the neutrino masses. The interesting feature of our work is that we will evaluate the absolute value of lightest neutrino mass which is found to be consistent with the cosmological constraints on the sum of the neutrino mass bound, Σim( νi ) < 0.23 eV from CMB, Planck 2015 data (CMB15+ LRG+ lensing + H0). We note that absolute value of lightest neutrino mass is also not known so far, and hence our prediction made here may be tested in future when experiments (including neutrinoless double beta decay experiments) will determine its value in future.

Keywords: Non unitarity; CP violation phase; Majorana phases; leptogenesis; Baryogenesis.

 

References

  1. Cuesta JA, Niro V, Verde L. Neutrino mass limits: Robust information from the power spectrum of galaxy surveys. Physics of the Dark Universe. 2016;13:77–86. Available from: https://dx.doi.org/10.1016/j.dark.2016.04.005
  2. Esteban I, Gonzalez-Garcia MC, Maltoni M, Martinez-Soler I, Schwetz T. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity . JHEP. 2017;p. 87.
  3. Samanta R, Sen M. Flavoured leptogenesis and CPμτ symmetry. Journal of High Energy Physics. 2020;2020(1). Available from: https://dx.doi.org/10.1007/jhep01(2020)193
  4. Kuzmin V, Rubakov V, Shaposhnikov M. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Trieste Int. Cent. Theor. Phys. 1985;155.
  5. Nardi E, Nir Y, Roulet E, Racker J. The importance of flavor in leptogenesis. Journal of High Energy Physics. 2006;2006(01). Available from: https://dx.doi.org/10.1088/1126-6708/2006/01/164
  6. Casas JA, Ibarra A. Oscillating neutrinos and μ→e,γ. Nuclear Physics B. 2001;618(1-2):171–204. Available from: https://dx.doi.org/10.1016/s0550-3213(01)00475-8
  7. Davidson S, Nardi E, Nir Y. Leptogenesis. Physics Reports. 2008;466(4-5):105–177. Available from: https://dx.doi.org/10.1016/j.physrep.2008.06.002
  8. Samantaa R, Chakraborty M, Roy P. Ambar Ghosal, Baryon asymmetry via leptogenesis in a neutrino mass model with complex. JCAP. 2017;03:25.
  9. Abada A, Davidson S, Josse-Michaux FX, Losada M, Riotto A. Flavour issues in leptogenesis. Journal of Cosmology and Astroparticle Physics. 2006;2006(04). Available from: https://dx.doi.org/10.1088/1475-7516/2006/04/004
  10. Abada A, Davidson S, Ibarra A, Josse-Michaux FX, Losada M, Riotto A. Flavour matters in leptogenesis. Journal of High Energy Physics. 2006;2006(09). Available from: https://dx.doi.org/10.1088/1126-6708/2006/09/010
  11. Nardi E, Nir Y, Roulet E, Racker J. The importance of flavor in leptogenesis. Journal of High Energy Physics. 2006;2006(01). Available from: https://dx.doi.org/10.1088/1126-6708/2006/01/164
  12. Dev PSB, Millington P, Pilaftsis A, Teresi D. Flavour covariant transport equations: An application to resonant leptogenesis. Nuclear Physics B. 2014;886:569–664. Available from: https://dx.doi.org/10.1016/j.nuclphysb.2014.06.020
  13. Bora K, Ghosh G, Dutta D. Octant Degeneracy and Quadrant of Leptonic CPV Phase at Long BaselineνExperiments and Baryogenesis. Advances in High Energy Physics. 2016;2016:1–11. Available from: https://dx.doi.org/10.1155/2016/9496758
  14. Borah M, Borah D, Das MK. Discriminating Majorana neutrino textures in light of the baryon asymmetry. Physical Review D. 2015;91(11). Available from: https://dx.doi.org/10.1103/physrevd.91.113008
  15. Malinský M, Ohlsson T, Xing Zz, Zhang H. Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model. Physics Letters B. 2009;679(3):242–248. Available from: https://dx.doi.org/10.1016/j.physletb.2009.07.038
  16. Penedo JT, Petcov ST, Yanagida TT. Low-scale seesaw and the CP violation in neutrino oscillations. Nuclear Physics B. 2018;929:377–396. Available from: https://dx.doi.org/10.1016/j.nuclphysb.2018.02.018
  17. Fields BD, Molarto P, Sarkar S. Big Bang Nucleosynthesis. Review of PDG-2020 (Astrophysical Constants and Parameters). .

Copyright

© 2020 Ghosh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).

DON'T MISS OUT!

Subscribe now for latest articles and news.