• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 11, Pages: 829-838

Original Article

Nowcasting of Weather Parameters Impacting Solar PV Output Using Grey System Model

Received Date:17 October 2022, Accepted Date:17 February 2023, Published Date:20 March 2023


Objectives: To nowcast the weather parameters having a direct impact on the power output of the solar PV installations, with high prediction accuracy and a limited quantity of past data. Methods: In this study, the GM (1,1) model with Fourier series of error residuals has been proposed and used for forecasting the weather parameters namely Ambient temperature, Solar Photo Voltaic Module temperature, and Solar Irradiation. Real-time data has been used for showing the suitability of the proposed model to nowcast the weather parameters. The existing models like Autoregression and Double Exponential Smoothing are applied to the same data to prove the superiority of the GM (1,1) model with Fourier series of error residuals. Findings: It is found that the GM (1,1) model with Fourier series of error residuals is an apt model for nowcasting the weather parameters. The accuracy of the predicted result of this model on the real-time data ascertains the appropriateness of this model for nowcasting. The precision of the prediction accuracy of GM (1,1) with the Fourier series of error residuals model is verified by comparing it with other time series prediction models such as Autoregression and Double Exponential Smoothing algorithms. Novelty: Using GM (1,1) with the Fourier series of error residuals model for nowcasting the weather data is novel when compared with the existing algorithms because for nowcasting the weather parameters with accuracy, many of the existing algorithms require a huge volume of past data and involve complex computation. On the other hand, GM (1,1) with the Fourier series of error residuals model requires only a limited measure of past data and involves simple computation. Moreover, the accuracy of prediction is significantly higher than the other models.

Keywords: Grey Theory; Renewable Energy; PV Installation; Auto Regression; Double Exponential Smoothing


  1. Refaai MRA, Dhanesh L, Ganthia BP, Mohanty M, Subbiah R, Anbese EM. Design and Implementation of a Floating PV Model to Analyse the Power Generation. International Journal of Photoenergy. 2022;2022:1–13. Available from: https://doi.org/10.1155/2022/3891881
  2. Hendouzi AE, Bourouhou A. Solar Photovoltaic Power Forecasting. Journal of Electrical and Computer Engineering. 2020;2020:1–21. Available from: https://doi.org/10.1155/2020/8819925
  3. Hu K, Wang L, Li W, Cao S, Shen Y. Forecasting of solar radiation in photovoltaic power station based on ground‐based cloud images and BP neural network. IET Generation, Transmission & Distribution. 2022;16(2):333–350. Available from: https://doi.org/10.1049/gtd2.12309
  4. Rodríguez-Benítez FJ, López-Cuesta M, Arbizu-Barrena C, Fernández-León MM, Pamos-Ureña MÁ, Tovar-Pescador J, et al. Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery. Applied Energy. 2021;292:116838. Available from: http://dx.doi.org/10.1016/j.apenergy.2021.116838
  5. Yang, Gao, Li, Jia, Jiang. Nowcasting of Surface Solar Irradiance Using FengYun-4 Satellite Observations over China. Remote Sensing. 1984;11(17):1984. Available from: http://dx.doi.org/10.3390/rs11171984
  6. Nespoli A, Niccolai A, Ogliari E, Perego G, Collino E, Ronzio D. Machine Learning techniques for solar irradiation nowcasting: Cloud type classification forecast through satellite data and imagery. Applied Energy. 2022;305:117834. Available from: http://dx.doi.org/10.1016/j.apenergy.2021.117834
  7. Nespoli A, Niccolai A. Solar Position Identification on Sky Images for Photovoltaic Nowcasting applications. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). 2020;p. 1–5. Available from: http://dx.doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160490
  8. Siddiqui TA, Bharadwaj S, Kalyanaraman S. A Deep Learning Approach to Solar-Irradiance Forecasting in Sky-Videos. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). 2019;p. 2166–2174. Available from: http://dx.doi.org/10.1109/WACV.2019.00234
  9. Leva S, Nespoli A, Pretto S, Mussetta M, Ogliari EGC. PV Plant Power Nowcasting: A Real Case Comparative Study With an Open Access Dataset. IEEE Access. 2020;8:194428–194440. Available from: http://dx.doi.org/10.1109/ACCESS.2020.3031439
  10. Sudharshan K, Naveen C, Vishnuram P, Kasagani DVSKR, Nastasi BV. Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction. Energies. 2022;15(17):6267. Available from: https://doi.org/10.3390/ en15176267
  11. Pattanaik D, Mishra S, Khuntia GP, Dash R, Swain SC. An innovative learning approach for solar power forecasting using genetic algorithm and artificial neural network. Open Engineering. 2020;10(1):630–641. Available from: https://doi.org/10.1515/eng-2020-0073
  12. Khan S, Shaikh F, Siddiqui MM, Hussain T, Kumar L, Nahar A. Hourly Forecasting of Solar Photovoltaic Power in Pakistan Using Recurrent Neural Networks. International Journal of Photoenergy. 2022;2022:1–11. Available from: https://doi.org/10.1155/2022/7015818
  13. Tu CSS, Tsai WCC, Hong CMM, Lin WMM. Short-Term Solar Power Forecasting via General Regression Neural Network with Grey Wolf Optimization. Energies. 2022;15(18):6624. Available from: https://doi.org/10.3390/en15186624
  14. Martins BJ, Cerentini A, Neto SL, Chaves TZ, Branco NM, Wangenheim AV, et al. Systematic review of nowcasting approaches for solar energy production based upon ground-based cloud imaging. 2009. Available from: https://doi.org/10.1016/j.seja.2022.100019
  15. Gupta P, Singh R. PV power forecasting based on data-driven models: a review. International Journal of Sustainable Engineering. 2021;14(6):1733–1755. Available from: https://doi.org/10.1016/j.seja.2022.100019
  16. Wang CN, Phan VT. An Improvement the Accuracy of Grey Forecasting Model for Cargo Throughput in International Commercial Ports of Kaohsiung. International Journal of Business and Economics Research. 2014;3(1):1. Available from: https://dx.doi.org/10.11648/j.ijber.20140301.11


© 2023 Uma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.