• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 13, Pages: 1081-1096

Original Article

Numerical investigation of free convection through a horizontal open-ended axisymmetric cavity

Received Date:18 December 2020, Accepted Date:03 March 2021, Published Date:24 April 2021

Abstract

Objectives: The purposes of this work are to investigate the free convective heat transfer in an axis-symmetric open-ended cavity heated from below and to propose useful correlations of Nusselt number. Methods: The governing equations that model the fluid flow and the temperature field are solved using a control volume-based finite differences method. Under steady state condition, the natural convective flow is considered to be laminar, incompressible and axisymmetric. The Boussinesq approximation with constant thermophysical properties is adopted. Numerical experimentations are performed to deduce the optimum sizes of the calculation domain and the mesh grid. Findings: the obtained results indicate that when Rayleigh number (Ra) and aspect ratio (A) are low the heat transfer is weak and mainly conductive. The increase of Ra and A enhances the convective heat transfer mode thereby the heat transfer is ameliorated. Unlike the Rayleigh Bénard convection, the transition from conduction to convection produces at critical value of Rayleigh number (Rac) that is variable dependent on A. Novelty: To the best of authors knowledge, the formula of (Rac) elaborated in this work for the studied cavity is the first attempt. As well, correlation of Nusselt numbers (Nu) for the cold upper plate in terms of Ra and A is performed. Comparisons between Nu at the lower plate given in previous work and Nusselt number at the upper plate is conducted.

Keywords: free convection; circular plates; Nusselt number correlations; open ended cavity; critical Rayleigh number

References

  1. Said AAH, Chehouani H, Er-Raki S. Numerical and experimental study of free convection through a horizontal open-ended axisymmetric cavity. Heat Transfer-Asian Research. 2018;47(2):437–457. Available from: https://dx.doi.org/10.1002/htj.21312
  2. Chehouani H, Said AAH, Fagrich ME. Heat transfer study of free convection through a horizontal open ended axisymmetric cavity using holographic interferometry. Experimental Thermal and Fluid Science. 2015;60:308–316. Available from: https://dx.doi.org/10.1016/j.expthermflusci.2014.10.007
  3. Tokanai H, Kuriyama M, Harada E, Konno H. Natural convection heat transfer in the open space between two horizontal circular planes with different temperatures. Heat Transfer Asian Research. 2001;30(6):521–531. Available from: https://dx.doi.org/10.1002/htj.1037
  4. Andreozzi A, Manca O. Numerical Investigation on the Steady State Natural Convection in a Horizontal Open-Ended Cavity with a Heated Upper Wall. Numerical Heat Transfer, Part A: Applications. 2010;57(7):453–472. Available from: https://dx.doi.org/10.1080/10407781003684324
  5. Manca O, Nardini S. Experimental investigation on natural convection in horizontal channels with the upper wall at uniform heat flux. International Journal of Heat and Mass Transfer. 2007;50(5-6):1075–1086. Available from: https://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.07.038
  6. Hollands KGT, Raithby GD, Konicek L. Correlation equations for free convection heat transfer in horizontal layers of air and water. International Journal of Heat and Mass Transfer. 1975;18(7-8):879–884. Available from: https://dx.doi.org/10.1016/0017-9310(75)90179-9
  7. Ch AZR, Alturaihi MH, Ali FAMA, Habeeb LJ. Numerical Investigation of Heat Transfer in Enclosed Square Cavity. Journal of Mechanical Engineering Research and Developments. 2020;43(6):388–403.
  8. Vafai K, Ettefagh J. The effects of sharp corners on buoyancy-driven flows with particular emphasis on outer boundaries. International Journal of Heat and Mass Transfer. 1990;33(10):2311–2328. Available from: https://dx.doi.org/10.1016/0017-9310(90)90129-i
  9. Boetcher SKS, Sparrow EM. Buoyancy-induced flow in an open-ended cavity: Assessment of a similarity solution and of numerical simulation models. International Journal of Heat and Mass Transfer. 2009;52(15-16):3850–3856. Available from: https://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.10.035
  10. Bhardwaj S, Dalal A. Numerical Investigation of Free Convection in a Porous Corrugated Cavity Filled With Silver (Ag) Dispersed Nano-Fluid. Journal of Thermal Science and Engineering Applications. 2021;13(4). Available from: https://dx.doi.org/10.1115/1.4048835
  11. Saxena A, Singh S, Srivastava A. Comparison of Local Heat Transfer Distribution in Between Three-Dimensional Inclined Closed and Open Cavities. Journal of Heat Transfer. 2020;142(3):1–12. Available from: https://dx.doi.org/10.1115/1.4045753
  12. Santen HV, Kleijn CR, Akker HEAVD. Mixed convection in radial flow between horizontal plates — I. Numerical simulations. International Journal of Heat and Mass Transfer. 2000;43(9):1523–1535. Available from: https://dx.doi.org/10.1016/s0017-9310(99)00232-x
  13. Tokanai H, Shishido M, Kuriyama M, Konno H. Numerical simulation of natural convection heat transfer in the open space between two horizontal circular planes. Heat Transfer Asian Research. 2001;30(6):485–502. Available from: https://dx.doi.org/10.1002/htj.1034
  14. Horibe A, Shimoyama R, Haruki N, Sanada A. Experimental study of flow and heat transfer characteristics of natural convection in an enclosure with horizontal parallel heated plates. International Journal of Heat and Mass Transfer. 2012;55(23-24):7072–7078. Available from: https://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.07.021
  15. Wang Y, Chen J, Zhang W. Natural convection in a circular enclosure with an internal cylinder of regular polygon geometry. AIP Advances. 2019;9(6):065023-1–065023-13. Available from: https://dx.doi.org/10.1063/1.5100892
  16. Medebber MA, Retiel N, said bO, Aissa A, Ganaoui ME. Transient Numerical Analysis of Free Convection in Cylindrical Enclosure. MATEC Web of Conferences. 2020;307:1–9. Available from: https://dx.doi.org/10.1051/matecconf/202030701029
  17. Gosman AD, Pun WM, Runchal AK, Spalding DB, Wolfshtein M. Heat and Mass Transfer in Recirculating Flows. London. Academic Press. 1973.
  18. Marcondes F, Mali CR. Treatment of the inlet boundary conditions in natural-convection in open-ended channels. Numerical Heat Transfer, Part B: Fundamentals. 1999;35(3):317–345. Available from: https://dx.doi.org/10.1080/104077999275893

Copyright

© 2021 AIT HAJ SAID et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.