• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 15, Pages: 1145-1152

Original Article

On the Development of Compact Super-Wideband Fractal Antenna

Received Date:14 December 2022, Accepted Date:04 March 2023, Published Date:18 April 2023


Objective: To design and fabricate a compact fractal antenna with high Bandwidth Ratio (BR) and Bandwidth Dimension Ratio (BDR) for Super-Wideband (SWB) and upcoming wireless communication applications. Methods: High Frequency Structure Simulator (HFSS) is used for all the required simulations regarding antenna prototype design and optimization. The proposed antenna consists of nested square fractal in a circular ring and with a rounded corner notch loaded partial ground, which is designed and fabricated on 1 mm thick FR4 substrate. Findings: The final results evince that proposed antenna has an operating bandwidth of 36.5 GHz (2.37- 38.95 GHz), with a reflection coefficient (S11) less than -10 dB. It has a maximum gain of 13.4 dBi, BDR of 3498, and BR of 16.4:1. It has an Electrical dimension of 0.22  0.23 l 2. The proposed antenna’s resonating and radiation characteristics have been validated experimentally. Simulated and experimentally measured results are in good agreement with each other. Novelty: The key benefits of the proposed antenna are small electrical dimensions, large bandwidth, and a high BDR. The proposed antenna is suitable for numerous wireless applications such as WLAN, WiMAX, Wi-Fi, 5G communication in sub-6Ghz band as well as in mm Wave frequency band, and S, C, X, Ku, and Ka bands applications. Keywords: Bandwidth Dimension Ratio; Compact; Electrical Dimension; Nested Square Fractal; Super-wideband


  1. Zhao D, Yang C, Zhu M, Chen Z. Design of WLAN/LTE/UWB Antenna with Improved Pattern Uniformity Using Ground-Cooperative Radiating Structure. IEEE Transactions on Antennas and Propagation. 2016;64(1):271–276. Available from: https://doi.org/10.1109/TAP.2015.2498939
  2. Guebgoub N, Mahri O, Denidni TA, Redadaa S. Design and Analysis of a New Fractal Compact Antenna for Ultra-Wideband Applications. Journal of Nano- and Electronic Physics. 2022;14(1). Available from: https://jnep.sumdu.edu.ua/en/full_article/3413
  3. Swain BR, Satapathy PC, Sharma AK. A Compact Fractal Antenna for Ultra-Wide Band Operation. 2021 IEEE 2nd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC). 2021;p. 1–3. Available from: https://ieeexplore.ieee.org/document/9708493
  4. Siddiqui JY, Saha C, Antar YMM. Compact SRR Loaded UWB Circular Monopole Antenna With Frequency Notch Characteristics. IEEE Transactions on Antennas and Propagation. 2014;62(8):4015–4020. Available from: https://doi.org/10.1109/TAP.2014.2327124
  5. Sagne D, Pandhare RA. Design and Analysis of Inscribed Fractal Super Wideband Antenna for Microwave Applications. Progress In Electromagnetics Research C. 2022;121:49–63. Available from: https://doi.org/10.2528/PIERC22030703
  6. Balani W, Sarvagya M, Samasgikar A, Ali T, Kumar P. Design and Analysis of Super Wideband Antenna for Microwave Applications. Sensors. 2021;21(2):477. Available from: https://doi.org/10.3390/s21020477
  7. Rumsey V. Frequency Independent Antennas. Academic Press. 1966.
  8. Sharma V, Gunaram, Deegwal JK, Mathur D. Super-Wideband Compact Offset Elliptical Ring Patch Antenna for 5G Applications. Wireless Personal Communications. 2022;122(2):1655–1670. Available from: https://link.springer.com/10.1007/s11277-021-08965-4
  9. Figueroa-Torres CÁ, Medina-Monroy JL, Lobato-Morales H, Chávez-Pérez RA, Calvillo-Téllez A. A novel fractal antenna based on the Sierpinski structure for super wide-band applications. Microwave and Optical Technology Letters. 2017;59(5):1148–1153. Available from: http://doi.wiley.com/10.1002/mop.30489
  10. Ajith KK, Bhattacharya A. A Novel Compact Superwideband Bowtie Antenna for 420 MHz to 5.5 GHz Operation. IEEE Transactions on Antennas and Propagation. 2018;66(8):3830–3836. Available from: https://ieeexplore.ieee.org/document/8359097
  11. Singhal S, Singh AK. Modified star-star fractal (MSSF) super-wideband antenna. Microwave and Optical Technology Letters. 2017;59(3):624–630. Available from: http://doi.wiley.com/10.1002/mop.30357
  12. Rahman MN, Islam MT, Mahmud MZ, Samsuzzaman M. Compact microstrip patch antenna proclaiming super wideband characteristics. Microwave and Optical Technology Letters. 2017;59(10):2563–2570. Available from: http://doi.wiley.com/10.1002/mop.30770
  13. Kundu S, Chatterjee A. A compact super wideband antenna with stable and improved radiation using super wideband frequency selective surface. AEU - International Journal of Electronics and Communications. 2022;150:154200. Available from: https://doi.org/10.1016/j.aeue.2022.154200
  14. Azim R, Islam MT, Arshad H, Alam MM, Sobahi N, Khan AI. CPW-Fed Super-Wideband Antenna With Modified Vertical Bow-Tie-Shaped Patch for Wireless Sensor Networks. IEEE Access. 2021;9:5343–5353. Available from: https://doi.org/10.1109/ACCESS.2020.3048052
  15. Hasan MR, Riheen MA, Sekhar PA, Karacolak T. Compact CPW‐fed circular patch flexible antenna for super‐wideband applications. IET Microwaves, Antennas & Propagation. 2020;14(10):1069–1073. Available from: https://doi.org/10.1049/iet-map.2020.0155
  16. Das S, Mitra D, Chaudhuri SRB. Staircase Fractal Loaded Microstrip Patch Antenna For Super Wide Band Operation. Progress In Electromagnetics Research C. 2019;95:183–194. Available from: http://www.jpier.org/PIERC/pier.php?paper=19070105
  17. Singhal S. Asymmetrically fed octagonal Sierpinski band-notched super-wideband antenna. Journal of Computational Electronics. 2017;16(1):210–219. Available from: http://link.springer.com/10.1007/s10825-016-0948-5
  18. Garg RK, Singhal S, Tomar RS. A Cpw Fed Clown-Shaped Super Wideband Antenna. Progress In Electromagnetics Research Letters. 2021;99:159–167. Available from: http://www.jpier.org/PIERL/pier.php?paper=21070502
  19. Ouf EGE, Abo-Elhassan MAEA, Farahat AE, Hussein KFA, Mohassieb SA. High Performance Two-arm Antenna for Super Wideband Operation. Progress In Electromagnetics Research C. 2022;125:105–115. Available from: http://www.jpier.org/PIERC/pier.php?paper=22090701
  20. Dey S, Arefin MS, Karmakar NC. Design and Experimental Analysis of a Novel Compact and Flexible Super Wide Band Antenna for 5G. IEEE Access. 2021;9:46698–46708. Available from: https://ieeexplore.ieee.org/document/9383209
  21. Ramanujam P, Venkatesan PGR, Arumugam CG, Ponnusamy M. Design of miniaturized super wideband printed monopole antenna operating from 0.7 to 18.5 GHz. AEU - International Journal of Electronics and Communications. 2020;123:153273. Available from: https://doi.org/10.1016/j.aeue.2020.153273
  22. Okan T. A compact octagonal‐ring monopole antenna for super wideband applications. Microwave and Optical Technology Letters. 2020;62(3):1237–1244. Available from: https://onlinelibrary.wiley.com/doi/10.1002/mop.32117
  23. Ayyappan M, Patel P. On Design of a Triple Elliptical Super Wideband Antenna for 5G Applications. IEEE Access. 2022;10:76031–76043. Available from: https://doi.org/10.1109/ACCESS.2022.3185241
  24. Cohen N. Fractal antenna applications in wireless telecommunications. Professional Program Proceedings. Electronic Industries Forum of New England. 1997;p. 43–52. Available from: http://ieeexplore.ieee.org/document/605374
  25. Kumar A, Pharwaha A. CPW-Fed Wide Band Micro-machined Fractal Antenna with Band-notched Function. Applied Computational Electromagnetics Society. 2020;35(8):929–935. Available from: https://journals.riverpublishers.com/index.php/ACES/article/view/7773
  26. Okas P, Sharma A, Gangwar RK. Super-wideband CPW fed modified square monopole antenna with stabilized radiation characteristics. Microwave and Optical Technology Letters. 2018;60(3):568–575. Available from: https://doi.org/10.1002/mop.31006
  27. Singhal S, Singh AK. Asymmetrically CPW-fed circle inscribed hexagonal super wideband fractal antenna. Microwave and Optical Technology Letters. 2016;58(12):2794–2799. Available from: https://doi.org/10.1002/mop.30156
  28. Singhal S, Singh AK. CPW-fed hexagonal Sierpinski super wideband fractal antenna. IET Microwaves, Antennas Propagation. 2016;10(15):1701–1708. Available from: https://doi.org/10.1049/iet-map.2016.0154
  29. Kumar A, Partap A. On the Design of 2×2 Element Fractal Antenna Array using Dragonfly Optimization. International Journal of Computer Applications. 2018;179(33):27–34. Available from: http://www.ijcaonline.org/archives/volume179/number33/kumar-2018-ijca-916745.pdf


© 2023 Kumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.