• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 25, Pages: 1244-1252

Original Article

HERA: High-Efficiency Resource Allocation Scheme for Newly Joined Mobile Terminal in Heterogeneous Wireless Network

Received Date:06 April 2022, Accepted Date:29 April 2022, Published Date:11 July 2022


Objectives:To design an efficient resource allocation design for provisioning service of varied traffic classes to Multi-Mode Mobile Terminals (MMTs) in Heterogeneous Wireless Networks (HWNs). In HWNs, users prerequisite certain Quality of Service (QoS); thus, for meeting QoS, theMMTs are handoff to the new network. However, handoff MMTs might induce interference with the ongoing communication of existing MMTs. As resources are shared, resource allocation becomes a challenging task. Methods:This study presents a High-Efficiency Resource Allocation optimization model for HWNs. The HERA scheme first employs Channel State Information (CSI) estimation for mitigating interference and establishing channel availability. Second, using game theory optimal resource is allocated to MMTs and proves the existence of Nash equilibrium (NE) for spectrum resource allocation to MMTs in HWNs. Finally, a hybrid resource allocation algorithm combining contentionless and contention-based is designed to provide an improved resource allocation mechanism. Findings:The experiment outcome shows the HERA scheme allocates resources more efficiently in comparison with Access Fairness Resource Allocation (AFRA)(1), Joint Resource Allocation with Power Optimization (JRA-PO)(2), Resource Allocation and Node Placement (RANP)(3), and Existing Resource Allocation (ERA)(4). The HERA improves throughput by 19.07% and reduces collision by 42.96% in comparison with ERA(4) . Novelty: existing model predominantly focused on either addressing interference or maximizing throughput by leveraging either contention or contention-less resource allocation mechanism. However, in this study both contention-less and contention-based mechanisms are merged to maximize throughput and reduce collision.

Keywords: Interference; Quality of service; Resource allocation; Softcomputing; Spectrum utilization; Heterogeneous communication network


  1. Huang X, Zhang D, Tang S, Chen Q, Zhang J. Fairness-Based Distributed Resource Allocation in Two-Tier Heterogeneous Networks. IEEE Access. 2019;7:40000–40012. Available from: https://doi/10.1109/ACCESS.2019.2905038
  2. Wei Z, Masouros C. Exploiting wireless interference in heterogeneous networks. Broadband Access Communication Technologies XV. 2021. Available from: https://doi.org/10.1117/12.2584735
  3. Hamid AK, Al-Wesabi FN, Nemri N, Zahary A, Khan I. An Optimized Algorithm for Resource Allocation for D2D in Heterogeneous Networks. CMC-Computers Materials & Continua. 2022;70:2923–2959. Available from: https://doi/10.32604/cmc.2022.020309
  4. Zhang Y, Zhang H, Zhou H, Long K, Karagiannidis GK. Resource Allocation in Terrestrial-Satellite-Based Next Generation Multiple Access Networks With Interference Cooperation. IEEE Journal on Selected Areas in Communications. 2022;40(4):1210–1221. Available from: https://doi/10.1109/JSAC.2022.3145810
  5. Zheng W, Yao J, Wu K. Mitigating Cross-Technology Interference in Heterogeneous Wireless Networks based on Deep Learning. 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). 2020;p. 230–237. Available from: https://doi/10.1109/ICPADS51040.2020.00040
  6. Tang J, Jiang Y, Dai X, Liang X, Fu Y. TCP-WBQ: a backlog-queue-based congestion control mechanism for heterogeneous wireless networks. Scientific Reports. 2022;12(1):3419. Available from: https://doi.org/10.1038/s41598-022-07276-3
  7. Lynch D, Fenton M, Fagan D, Kucera S, Claussen H, O'neill M. Automated Self-Optimization in Heterogeneous Wireless Communications Networks. IEEE/ACM Transactions on Networking. 2019;27(1):419–432. Available from: https://doi/10.1109/TNET.2018.2890547
  8. Gadde N, Jakkali B, Siddamallaih RBH, Gowrishankar G. Quality of experience aware network selection model for service provisioning in heterogeneous network. International Journal of Electrical and Computer Engineering (IJECE). 1839;12(2):1839. Available from: https://doi/10.11591/ijece.v12i2.pp1839-1848
  9. Chen Y, Ai B, Niu Y, He R, Zhong Z, Han Z. Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks. IEEE Transactions on Vehicular Technology. 2019;68(5):4760–4773. Available from: https://doi/10.1109/TVT.2019.2903858
  10. Na Z, Lv J, Zhang M, Peng B, Xiong M, Guan M. GFDM Based Wireless Powered Communication for Cooperative Relay System. IEEE Access. 2019;7:50971–50979. Available from: https://doi/10.1109/ACCESS.2019.2911176
  11. Deng N, Haenggi M. The Energy and Rate Meta Distributions in Wirelessly Powered D2D Networks. IEEE Journal on Selected Areas in Communications. 2019;37(2):269–282. Available from: https://doi/10.1109/JSAC.2018.2872373
  12. Deng N, Haenggi M. The Energy and Rate Meta Distributions in Wirelessly Powered D2D Networks. IEEE Journal on Selected Areas in Communications. 2019;37(2):269–282. Available from: https://doi/10.1109/JSAC.2018.2872373
  13. Deng N, Haenggi M. SINR and Rate Meta Distributions for HCNs With Joint Spectrum Allocation and Offloading. IEEE Transactions on Communications. 2019;67(5):3709–3722. Available from: https://doi/10.1109/TCOMM.2019.2895357
  14. Chattopadhyay A, Blaszczyszyn B, Altman E. Two-Tier Cellular Networks for Throughput Maximization of Static and Mobile Users. IEEE Transactions on Wireless Communications. 2019;18(2):997–1010. Available from: https://doi/10.1109/TWC.2018.2887386
  15. Kalamkar SS, Haenggi M. Simple Approximations of the SIR Meta Distribution in General Cellular Networks. IEEE Transactions on Communications. 2019;67(6):4393–4406. Available from: https://doi/10.1109/TCOMM.2019.2900676
  16. Han D, Li S, Peng Y, Chen Z. Energy Sharing-Based Energy and User Joint Allocation Method in Heterogeneous Network. IEEE Access. 2020;8(99):37077–37086. Available from: https://doi.org/10.1109/ACCESS.2020.2975293
  17. Yan L, Ding H, Zhang L, Liu J, Fang X, Fang Y, et al. Machine Learning-Based Handovers for Sub-6 GHz and mmWave Integrated Vehicular Networks. IEEE Transactions on Wireless Communications. 2019;18(10):4873–4885. Available from: https://doi/10.1109/TWC.2019.2930193
  18. Chen J, Wu Q, Xu Y, Qi N, Guan X, Zhang Y, et al. Joint Task Assignment and Spectrum Allocation in Heterogeneous UAV Communication Networks: A Coalition Formation Game-Theoretic Approach. IEEE Transactions on Wireless Communications. 2021;20(1):440–452. Available from: https://doi/10.1109/TWC.2020.3025316
  19. Bindle A, Gulati T, Kumar N. Exploring the alternatives to the conventional interference mitigation schemes for 5G wireless cellular communication network. International Journal of Communication Systems. 2022;35(4). Available from: https://doi/10.1002/dac.5059


© 2022 Nagaraja et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.