• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 16, Pages: 1656-1667

Original Article

Orange peel as an inducer for Laccase production in a novel fungal strain peyronellaea pinodella BL-3/4 and optimization of its cultural parameters by single parameter approach

Received Date:16 April 2020, Accepted Date:07 May 2020, Published Date:09 June 2020

Abstract

Objectives: Laccases are one of the ligninolytic enzymes with wide industrial applications hence objective of present study is to optimize laccase production in novel fungal strain Peyronellaea pinodella BL-3/4. Methodology: Fungal strains capable of oxidizing different lignin model compounds such as guaicol, syringaldazine and 2, 2'-Azino-bis (3ethylbenzthiozoline-6-sulphonic acid) were further tested for the laccase production in liquid media. 18s rRNA gene sequencing was performed to identify isolated novel fungal strain. Extracellular laccase activity from isolated fungal strain was optimized by the conventional `single parameter at a time' approach. Parameters used for this study included inoculum size, temperature, pH, agitation rate, lignocellulosic substrate, carbon source and nitrogen source. Findings: Among ten isolated laccase positive fungal strains, BL-3/4, exhibited maximum activity and morphological resemblance to Peyronellaea. 18s rRNA gene sequencing and phylogenetic analysis revealed that the isolated fungal strain is a novel one and identified as Peyronellaea pinodella BL-3/4. Optimization by single parameter approach leads to an 18 fold increase in laccase production by Peyronellaea pinodella BL-3/4. During the optimization of agro residues, orange peel acting as a substrate dramatically changed laccase production from 10.4 to 65.1 U/mL. Novelty: No reports are available on Peyronellaea pinodella laccase activity and optimization of various factors affecting the laccase production. Orange peelings (an agro waste)as a substrate has increased the laccase production by six-fold in P. pinodella, this makes the fungi a better candidate for large scale production of laccase as well as for bioremediation, when compared to all other reported fungi.

Keywords: Ascomycetes; Optimization; Aromatic inducers; Laccase activity; Lignin model compounds

References

  1. Dashtban M, Schraft H, Qin W. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives. International Journal of Biological Sciences. 2009;5(6):578–595. doi: 10.7150/ijbs.5.578
  2. Kosman DJ. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. JBIC Journal of Biological Inorganic Chemistry. 2010;15(1):15–28. doi: 10.1007/s00775-009-0590-9
  3. Zheng F, Cui BK, Wu XJ, Meng G, Liu HX, Si J. Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. International Biodeterioration and Biodegradation. 2016;110:69–78. doi: 10.1016/j.ibiod.2016.03.004
  4. Aguila SA, Shimomoto D, Ipinza F, Bedolla-Valdez ZI, Romo-Herrera J, Contreras OE, et al. A biosensor based onCoriolopsis gallicalaccase immobilized on nitrogen-doped multiwalled carbon nanotubes and graphene oxide for polyphenol detection. Science and Technology of Advanced Materials. 2015;16(5):055004. doi: 10.1088/1468-6996/16/5/055004
  5. Dhouib A, Hamza M, Zouari H, Mechichi T, Hmidi R, Labat M, et al. Screening for Ligninolytic Enzyme Production by Diverse Fungi from Tunisia. World Journal of Microbiology and Biotechnology. 2005;21(8-9):1415–1423. doi: 10.1007/s11274-005-5774-z
  6. Agrawal K, Chaturvedi V, Verma P. Fungal laccase discovered but yet undiscovered. Bioresources and Bioprocessing. 2018;5(4):1–12. doi: 10.1186/s40643-018-0190-z
  7. Yang J, Li W, Ng TB, Deng X, Lin J, Ye X. Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Frontiers in microbiology. 2017;8:1–24. doi: 10.3389/fmicb.2017.00832
  8. Hattori M, Konishi H, Tamura Y, Konno K, Sogawa K. Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps. Journal of Insect Physiology. 2005;51(12):1359–1365. doi: 10.1016/j.jinsphys.2005.08.010
  9. Songulashvili G, Flahaut S, Demarez M, Tricot C, Bauvois C, Debaste F, et al. High yield production in seven days of Coriolopsis gallica 1184 laccase at 50 L scale; enzyme purification and molecular characterization. Fungal Biology. 2016;120(4):481–488. doi: 10.1016/j.funbio.2016.01.008
  10. Sadhasivam S, Savitha S, Swaminathan K, Lin FH. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochemistry. 2008;43(7):736–742. doi: 10.1016/j.procbio.2008.02.017
  11. Revankar MS, Lele SS. Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochemistry. 2006;41(3):581–588. doi: 10.1016/j.procbio.2005.07.019
  12. Banerjee UC, Vohra RM. Production of laccase byCurvularia sp. Folia Microbiologica. 1991;36(4):343–346. doi: 10.1007/bf02814506
  13. Zhu C, Bao G, Huang S. Optimization of laccase production in the white-rot fungusPleurotus ostreatus(ACCC 52857) induced through yeast extract and copper. Biotechnology & Biotechnological Equipment. 2016;30(2):270–276. doi: 10.1080/13102818.2015.1135081
  14. Hao J, Song F, Huang F, Yang C, Zhang Z, Zheng Y, et al. Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp. and its decolourisation of azo dye. Journal of Industrial Microbiology and Biotechnology. 2007;34:233–240. doi: 10.1007/s10295-006-0191-3
  15. Elshafei AM, Hassan MM, Haroun BM, Elsayed MA, Othman AM. Optimization of Laccase Production from <i>Penicillium martensii </i>NRC 345. Advances in Life Sciences. 2012;2(1):31–37. doi: 10.5923/j.als.20120201.05
  16. Feng X, Chen H, Xue D, Yao S. Enhancement of Laccase Activity by Marine-derived Deuteromycete Pestalotiopsis sp. J63 with Agricultural Residues and Inducers. Chinese Journal of Chemical Engineering. 2013;21(10):1182–1189. doi: 10.1016/s1004-9541(13)60567-4
  17. JRP, Bhaskaran L. Screening of novel ascomycetes for the production of laccase enzyme using different lignin model compounds. International Journal of Pharma and Bio Sciences. 2016;7(4):B452–8. doi: 10.22376/ijpbs.2016.7.4.b452-458
  18. Myasoedova NM, Renfeld ZV, Podieiablonskaia EV, Samoilova AS, Chernykh AM, Classen T, et al. Novel laccase—producing ascomycetes. Microbiology. 2017;86(4):503–511. doi: 10.1134/s0026261717030110
  19. Brijwani K, Rigdon A, Vadlani PV. Fungal Laccases: Production, Function, and Applications in Food Processing. Enzyme Research. 2010;2010:1–10. doi: 10.4061/2010/149748
  20. Pang S, Wu Y, Zhang X, Li B, Ouyang J, Ding M. Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochemistry. 2016;51(2):229–239. doi: 10.1016/j.procbio.2015.11.033
  21. Abdel-Azeem A. Biodiversity of laccase producing fungi in Egypt. Mycosphere. 2012;3(6):900–920. doi: 10.5943/mycosphere/3/6/4
  22. Alfarra HY, Hnhm O. A lignolytic fungi with laccase activity isolated from malaysian local environment for phytochemical transformation purposes. International Research Journal of Biological Sciences. 2013;2(2):1–6. doi: 10.ISCA-IRJBS-2012-226
  23. Niku-Paavola ML, Raaska L, Itävaara M. Detection of white-rot fungi by a non-toxic stain. Mycological Research. 1990;94(1):27–31. doi: 10.1016/s0953-7562(09)81260-4
  24. Rosales E, Couto SR, Sanromán MA. Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme and Microbial Technology. 2007;40:1286–1290. doi: 10.1016/j.enzmictec.2006.09.015
  25. Chhaya RS, Modi HA. Comparative study of laccase production by Streptomyces chartreusis in solid state and submerged fermentation. Indian Journal of Fundamental and Applied Life Sciences. 2013;3(1):73–84. Available from: http://www.cibtech.org/jls.htm
  26. Ire F, Ahuekwe E. Production of Fungal Laccase Using Orange Peelings as Substrate by Submerged Static Fermentation. British Microbiology Research Journal. 2016;15(5):1–19. doi: 10.9734/bmrj/2016/27257
  27. More SS, S. RP, K. P, M. S, Malini S, M. VS. Isolation, Purification, and Characterization of Fungal Laccase fromPleurotussp. Enzyme Research. 2011;2011:1–7. doi: 10.4061/2011/248735
  28. Jaber SM, Shah UKM, Asa’ari AZM, Ariff AB. Optimization of Laccase Production by Locally Isolated Trichoderma muroiana IS1037 Using Rubber Wood Dust as Substrate. BioResources. 2017;12(2):3834–49. doi: 10.15376/biores.12.2.3834-3849
  29. Sivakami V, Ramachandran B, Srivathsan J, Kesavaperumal G, Smily B, Kumar M, et al. Production and optimization of laccase and lignin peroxidase by newly isolated Pleurotus ostreatus LIG 19. Journal of Microbiology and Biotechnology Research. 2012;2(6):875–81. Available from: http://scholarsresearchlibrary.com/archive.html
  30. Afreen S, Anwer R, Singh RK, Fatma T. Extracellular laccase production and its optimization from Arthrospira maxima catalyzed decolorization of synthetic dyes. Saudi Journal of Biological Sciences. 2016;25(7):1446–1453. doi: 10.1016/j.sjbs.2016.01.015
  31. Chenthamarakshan A, Parambayil N, Miziriya N, Soumya PS, Lakshmi MSK, Ramgopal A, et al. Optimization of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of Design of experiments. BMC Biotechnology. 2017;17(1):12. doi: 10.1186/s12896-017-0333-x

Copyright

 © 2020 Patel, Bhaskaran. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.