• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 4, Pages: 335-350

Original Article

Performance evaluation of corona discharger for unipolar chargingof submicron aerosol particles in the size range of 20–300 nm

Received Date:19 October 2020, Accepted Date:15 January 2021, Published Date:02 February 2021

Abstract

Objectives: In this study, a unipolar corona discharger was developed and experimentally evaluated for its intrinsic and extrinsic charging efficiencies, and electrostatic and diffusion losses of submicron aerosol particles in the size range of 20–300 nm at different corona and ion trap voltages. Method: The applied voltage of the discharger ranged between 2.4 and 3.2 kV, corresponding to a discharge current of 0.19 nA–2.0 mA, and an ion number concentration of 1.88X1011–1.97X1015 ions/m3. Findings: Increasing the corona voltage could lead to a higher discharge current and ion concentration inside the discharger. In the proposed discharger, intrinsic charging efficiencies of aerosol particles between 76.9% and 93.0% were obtained for particle sizes ranging between 20 and 100 nm for the given corona and ion trap voltages. The extrinsic charging efficiency decreased as the ion trap voltage increased at a given corona voltage. Novelty: The optimal extrinsic charging efficiency of the discharger was observed to be approximately 20.8–58.6% for particle sizes ranging from 20 to 300 nm at a corona voltage and ion trap voltage of approximately 2.8 kV and 200 V, respectively. In this discharger, the highest electrostatic losses (approximately 73.5%, 83.7%, and 54.0%) were observed corresponding to corona voltages of 2.8, 3.0, and 3.2 kV, respectively at a particle diameter of 20 nm and an ion trap voltage of 300 V. Finally, the highest diffusion loss (approximately 18.9%) was observed at a particle diameter of 20 nm.

Keywords: Corona discharge; particle charging; aerosol discharger; particle loss

References

  1. Fushimi A, Hasegawa S, Takahashi K, Fujitani Y, Tanabe K, Kobayashi S. Atmospheric fate of nuclei-mode particles estimated from the number concentrations and chemical composition of particles measured at roadside and background sites. Atmospheric Environment. 2008;42(5):949–959. Available from: https://dx.doi.org/10.1016/j.atmosenv.2007.10.019
  2. Flagan RC. History of Electrical Aerosol Measurements. Aerosol Science and Technology. 1998;28(4):301–380. Available from: https://dx.doi.org/10.1080/02786829808965530
  3. Intra P, Tippayawong N. An overview of aerosol particle sensors for size distribution measurement. Maejo International Journal of Science and Technology. 2007;1:120–136. Available from: http://www.mijst.mju.ac.th/vol1/120-136.pdf
  4. Intra P, Tippayawong N. Progress in unipolar corona discharger designs for airborne particle charging: A literature review. Journal of Electrostatics. 2009;67(4):605–615. Available from: https://dx.doi.org/10.1016/j.elstat.2008.12.018
  5. Intra P, Tippayawong N. An Overview of Unipolar Charger Developments for Nanoparticle Charging. Aerosol and Air Quality Research. 2011;11(2):187–209. Available from: https://dx.doi.org/10.4209/aaqr.2010.10.0082
  6. Whitby KT. Generator for Producing High Concentrations of Small Ions. Review of Scientific Instruments. 1961;32(12):1351–1355. Available from: https://dx.doi.org/10.1063/1.1717250
  7. Medved A, Dorman F, Kaufman SL, Pöcher A. A new corona-based charger for aerosol particles. Journal of Aerosol Science. 2000;31:616–617. Available from: https://dx.doi.org/10.1016/s0021-8502(00)90625-6
  8. Hernandez-Sierra A, Alguacil FJ, Alonso M. Unipolar charging of nanometer aerosol particles in a corona ionizer. Journal of Aerosol Science. 2003;34(6):733–745. Available from: https://dx.doi.org/10.1016/s0021-8502(03)00033-8
  9. Alonso M, Martin MI, Alguacil FJ. The measurement of charging efficiencies and losses of aerosol nanoparticles in a corona charger. Journal of Electrostatics. 2006;64(3-4):203–214. Available from: https://dx.doi.org/10.1016/j.elstat.2005.05.008
  10. Intra P, Tippayawong N. Comparative Study on Electrical Discharge and Operational Characteristics of Needle and Wire-Cylinder Corona Chargers. Journal of Electrical Engineering and Technology. 2006;1(4):520–527. Available from: https://dx.doi.org/10.5370/jeet.2006.1.4.520
  11. Efimov AA, Arsenov PV, Maeder T, Ivanov VV. Unipolar Charging of Aerosol Particles in the Size Range 75-500 nm by Needle-plate Corona Charger. Oriental Journal of Chemistry. 2018;34(1):214–221. Available from: https://dx.doi.org/10.13005/ojc/340124
  12. Intra P, Wanusbodeepaisarn P, Siri-Achawawath T. Experimental study of charging efficiencies and losses of submicron aerosol particles in a cylindrical tri-axial charger. Iranian Journal of Electrical and Electronic Engineering. 2019;3:401–410. Available from: http://ijeee.iust.ac.ir/article-1-1393-en.pdf
  13. Jidenko N, Bouarouri A, Gensdarmes F, Maro D, Boulaud D, Borra JP. Post-corona unipolar chargers with tuneable aerosol size-charge relations: Parameters affecting ion dispersion and particle trajectories for charger designs. Aerosol Science and Technology. 2021;55(1):12–23. Available from: https://dx.doi.org/10.1080/02786826.2020.1817310
  14. Johnson TJ, Nishida RT, Irwin M, Symonds JPR, Olfert JS, Boies AM. Measuring the bipolar charge distribution of nanoparticles: Review of methodologies and development using the Aerodynamic Aerosol Classifier. Journal of Aerosol Science. 2020;143. Available from: https://dx.doi.org/10.1016/j.jaerosci.2020.105526
  15. Intra P, Yawootti A, Tippayawong N. An electrostatic sensor for the continuous monitoring of particulate air pollution. Korean Journal of Chemical Engineering. 2013;30(12):2205–2212. Available from: https://dx.doi.org/10.1007/s11814-013-0168-7
  16. Murtomaa M, Pekkala P, Kalliohaka T, Paasi J. A device for aerosol charge measurement and sampling. Journal of Electrostatics. 2005;63(6-10):571–575. Available from: https://dx.doi.org/10.1016/j.elstat.2005.03.018
  17. Li L, Chen, Dr, Tsai PJ. Use of an electrical aerosol detector (EAD) for nanoparticle size distribution measurement. Journal of Nanoparticle Research. 2009;11(1):111–120. Available from: https://doi.org/10.1007/s11051-008-9418-8
  18. Rostedt A, Marjamäki M, Yli-Ojanperä J, Keskinen J, Janka K, Niemelä V, et al. Non-Collecting Electrical Sensor for Particle Concentration Measurement. Aerosol and Air Quality Research. 2009;9(4):470–477. Available from: https://dx.doi.org/10.4209/aaqr.2009.03.0023
  19. Lanki T, Tikkanen J, Janka K, Taimisto P, Lehtimäki M. An electrical sensor for long-term monitoring of ultrafine particles in workplaces. Journal of Physics: Conference Series. 2011;304. Available from: https://dx.doi.org/10.1088/1742-6596/304/1/012013
  20. TSI Incorporated Instruction Manual for Electrical Aerosol Detector Model 3070A. Minnesota, USA. 2002.
  21. Intra P, Yawootti A, Rattanadecho P. Corona discharge characteristics and particle losses in a unipolar corona-needle charger obtained through numerical and experimental studies. Journal of Electrical Engineering & Technology. 2018;12(5):2021–2030. Available from: https://doi.org/10.5370/JEET.2017.12.5.2021
  22. Chen J, JHD. Ozone production in the negative DC corona. The dependence of discharge polarity. Plasma Chemistry and Plasma Processing. 2003;23(3):501–518. Available from: https://doi.org/10.1023/A:1023235032455
  23. English WN. Positive and Negative Point-to-Plane Corona in Air. Physical Review. 1948;74(2):170–178. Available from: https://dx.doi.org/10.1103/physrev.74.170
  24. Chang J, Kelly AJ, Crowley JM. Dekker M., ed. Handbook of Electrostatic Processes. New York. Marcel Dekker, Inc. 1995.
  25. Bamji SS, Bulinski AT, Prasad KM. Electric field calculations with the boundary element method. IEEE Transactions on Electrical Insulation. 1993;28(3):420–424. Available from: https://dx.doi.org/10.1109/14.236204
  26. Hinds WC. Aerosol Technology. John Wiley & Sons. 1999.
  27. Intra P, Limueadphai P, Tippayawong N. Particulate Emission Reduction from Biomass Burning in Small Combustion Systems with a Multiple Tubular Electrostatic Precipitator. Particulate Science and Technology. 2010;28(6):547–565. Available from: https://dx.doi.org/10.1080/02726351003758444
  28. Liu B, Pui D, Kinstley W, Fisher W. Aerosol Charging and Neutralization and Electrostatic Discharge in Clean Rooms. Journal of the IEST. 1987;30(2):42–46. Available from: https://dx.doi.org/10.17764/jiet.1.30.2.wx17682658p58871
  29. Romay FJ, Liu BYH, Pui DYH. A Sonic Jet Corona Ionizer for Electrostatic Discharge and Aerosol Neutralization. Aerosol Science and Technology. 1994;20(1):31–41. Available from: https://dx.doi.org/10.1080/02786829408959661
  30. Ichitsubo H, Alonso M, Ishii M, Endo Y, Kousaka Y, Sato K. Behavior of Ultrafine Particles generated from organic vapors by corona ionizers. Particle and Particle Systems Characterization. 1996;13:41–46. Available from: https://dx.doi.org/10.1002/ppsc.19960130108

Copyright

© 2021 Intra et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.