• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 48, Pages: 4646-4653

Original Article

Performance evaluation of virtual cloud labs using hypervisor and container

Received Date:21 November 2020, Accepted Date:05 December 2020, Published Date:30 December 2020


Objectives: To measure the performance of docker swarm technology in virtual labs.  Methods : The virtual laboratory is developed as a group of four system machines (VMs) on the same host computer as a cluster. The simulation depends on Linux OS, VirtualBox, Docker Swarm, Nginx, and Redis tools. Visualizing the tracing process by using portainer. Findings: The performance analysis of building virtual labs and running six main educational services using docker swarm virtualization technology are explained in detail. The experimental results have shown that the maximum utilization of the central processing unit (CPU) has reached 13% only for the nodes, 11% for the services, and 1% for the container, which considered very efficient in terms of processing. Moreover, the results have proved the effectiveness of the docker swarm in terms of memory usage since the maximum memory usage of nodes reached 101 MB, 103 MB for Container, and only 2% for each service. Additionally, the maximum network transition has reached (941 Bps) for service. Novelty/Applications: Building Cloud Virtual Labs enable students to connect remotely to the virtual machine at anytime and anywhere. Also, these labs enable instructors to trace the students’ progress and manage the evaluation process.

Keywords: Container; cloud; docker; hypervisor; orchestration; swarm


  1. Bharath MB, Ashoka DV. AAAS - framework in large virtualized environment. Indian Journal of Science and Technology. 2019;12(4):1–8.
  2. Polenov M, Guzik V, Lukyanov V. Hypervisors comparison and their performance testing. In: Computer science on-line conference. (pp. 148-157) Cham. Springer. 2018.
  3. Elhoseny H, Elhoseny M, Abdelrazek S, Riad AM, Hassanien AE. Ubiquitous smart learning system for smart cities. In: 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS). (pp. 329-334) IEEE. 2017.
  4. Yadav RR, Sousa ET, Callou GR. Performance comparison between virtual machines and docker containers. IEEE Latin America Transactions. 2009;16(8):2282–2290. Available from: https://doi.org/10.1109/TLA.2018.8528247
  5. Panum TK, Hageman K, Pedersen JM, Hansen RR. Haaukins: A Highly Accessible and Automated Virtualization Platform for Security Education. 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT. 2019;2161:236–238. Available from: https://doi.org/10.1109/ICALT.2019.00073
  6. NMA, Qureshi MB, JF, SA, Taheri J. Deployment of real time systems in the cloud environment. 2020. Available from: https://doi.org/10.1007/s11227-020-03334-7
  7. Ismail A, Abdlerazek S, El-Henawy IM. Big data analytics in heart diseases prediction. Journal of Theoretical and Applied Information Technology. 2020;98(11).
  8. Arango C, Dernat R, Sanabria J. Performance evaluation of container-based virtualization for high performance computing environments. Revista UIS Ingenierías. 2019;18(4):31–42. Available from: https://dx.doi.org/10.18273/revuin.v18n4-2019003
  9. Saswade N, Bharadi V, Zanzane Y. Virtual machine monitoring in cloud computing. Procedia Computer Science. 2016;79:135–142. Available from: https://dx.doi.org/10.1016/j.procs.2016.03.018
  10. Kovács Á. Comparison of different Linux containers. 2017 40th International Conference on Telecommunications and Signal Processing. 2017;p. 47–51. Available from: https://doi.org/10.1109/TSP.2017.8075934
  11. Singh S, Singh N. Containers & Docker: Emerging roles & future of Cloud technology. 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT). 2016;p. 804–807. Available from: https://doi.org/10.1109/ICATCCT.2016.7912109
  12. Huang D, Lu Y. Improving the efficiency of HPC data movement on container-based virtual cluster. CCF Transactions on High Performance Computing. 2020;10:1–4.
  13. Yang S, Wang X, Wang X, An L, Zhang G. High-performance docker integration scheme based on OpenStack. World Wide Web. . 2020.
  14. Khazaei H, Ravichandiran R, Park B, Bannazadeh H, Tizghadam A, ALG. Elascale: autoscaling and monitoring as a service. arXiv preprint arXiv:1711.03204. 2017.
  15. Naik N. Building a virtual system of systems using Docker Swarm in multiple clouds. 2016 IEEE International Symposium on Systems Engineering (ISSE). 2016;p. 1–3. Available from: https://doi.org/10.1109/SysEng.2016.7753148
  16. Available from: https://docs.docker.com/compose/compose-file/ (accessed )
  17. Poojara SR, Dharwadkar NV, Ghule V. Performance benchmarking of hypervisors-a case study. Indian J Sci Technol. 2017.
  18. Schörgenhumer A, Kahlhofer M, Grünbacher P, Mössenböck H. Can we Predict Performance Events with Time Series Data from Monitoring Multiple Systems. Companion of the 2019 ACM/SPEC International Conference on Performance Engineering. 2019;p. 9–12. Available from: https://doi.org/10.1145/3302541.3313101
  19. Raju IRK, Varma PS, Sundari MVR, Moses GJ. Deadline aware two stage scheduling algorithm in cloud computing. Indian Journal of Science and Technology. 2016;9(4). Available from: https://dx.doi.org/10.17485/ijst/2016/v9i4/80553


© 2020 Elbelgehy et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.