• P-ISSN 0974-6846 E-ISSN 0974-5645

# Indian Journal of Science and Technology

## Article

• VIEWS 4241
• PDF 1175

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 27, Pages: 2720-2732

Original Article

## Power Flow Analysis and Optimization in Ring Distribution Network of Bahawalpur using Newton Raphson Method

Received Date:13 June 2020, Accepted Date:19 July 2020, Published Date:31 July 2020

## Abstract

Background: The primary motive of an electrical power system is to generate and supply electric power efficiently and reliably to the consumer-end. Transmission losses, system instability and increasing cost in proportion to demand are the main challenges faced in this process. Power flow analysis is required to robustly predict the active / reactive power within the buses, voltage magnitude / phase angles at each bus, cost of transmission and losses well before the practical installation of the power network. Methods/Statistical Analysis: In this paper, we employ power flow analysis using Newton Raphson method and Fast Decoupled method to minimize cost of the electricity and finding optimum active and reactive powers without affecting the voltage regulation. The power flow algorithms are applied for solving the aforementioned load flow problem for ring distribution network of Bahawalpur. We carried out the modeling by obtaining realistic data for constructing bus admittance matrix and specifications of generation units and loads which are connected at the buses. Findings: As a result, optimum flow of power along with the voltage values among different regions of Bahawalpur is obtained. The results from both the algorithms successfully converge and there is an absolute match to validate the accuracy. Novelty: These novel results are of paramount importance since the proposed architecture of Bahawalpur is ring distribution network to replace the existing radial network for improved performance. Furthermore, this research will pave the way for power system planning of Bahawalpur region where all the electrical parameters are known beforehand to design the components according to the requirement.

Keywords: Electric power system; voltage magnitude; phase angle; power flow analysis; Newton Raphson method; ring distribution network; active power; reactive power

## References

1. Elgerd OI, Happ HH. Electric Energy Systems Theory: An Introduction. IEEE Transactions on Systems, Man, and Cybernetics. 1972;SMC-2(2):296–297. Available from: https://dx.doi.org/10.1109/tsmc.1972.4309116
2. Tinney W, Hart C. Power Flow Solution by Newton's Method. IEEE Transactions on Power Apparatus and Systems. 1967;PAS-86(11):1449–1460. Available from: https://dx.doi.org/10.1109/tpas.1967.291823
3. Stott B, Alsac O. Fast Decoupled Load Flow. IEEE Transactions on Power Apparatus and Systems. 1974;PAS-93(3):859–869. Available from: https://dx.doi.org/10.1109/tpas.1974.293985
4. Zhang F, Cheng CS. A modified Newton method for radial distribution system power flow analysis. IEEE Transactions on Power Systems. 1997;12(1):389–397.
5. Jasmon GB, Lee LHCC. Distribution network reduction for voltage stability analysis and loadflow calculations. International Journal of Electrical Power & Energy Systems. 1991;13(1):9–13. Available from: https://dx.doi.org/10.1016/0142-0615(91)90011-j
6. Chen TH, Chen MS, Hwang KJ, Kotas P, Chebli EA. Distribution system power flow analysis-a rigid approach. IEEE Transactions on Power Delivery. 1991;6(3):1146–1152. Available from: https://dx.doi.org/10.1109/61.85860
7. Lin WM, Teng JH. Three-phase distribution network fast-decoupled power flow solutions. International Journal of Electrical Power & Energy Systems. 2000;22(5):375–380. Available from: https://dx.doi.org/10.1016/s0142-0615(00)00002-8
8. Teng JH. A modified Gauss-Seidel algorithm of three-phase power flow analysis in distribution networks. International Journal of Electrical Power and Energy Systems. 2000;24(2). Available from: https://doi.org/10.1016/S0142-0615(01)00022-9
9. Tripathy SC, Prasad G, Malik OP, Hope GS. Load-Flow Solutions for Ill-Conditioned Power Systems by a Newton-Like Method. IEEE Transactions on Power Apparatus and Systems. 1982;PAS-101(10):3648–3657. Available from: https://dx.doi.org/10.1109/tpas.1982.317050
10. Baran M, Wu FF. Optimal sizing of capacitors placed on a radial distribution system. IEEE Transactions on Power Delivery. 1989;4(1):735–743. Available from: https://dx.doi.org/10.1109/61.19266
11. Chiang HD. A decoupled load flow method for distribution power network algorithms, analysis and convergence study. International Journal of Electrical Power and Energy Systems. 1991;13(3):130–138. Available from: https://doi.org/10.1016/0142-0615(91)90001-C
12. Goswami SK, Basu SK. Direct solution of distribution systems. IEE Proceedings C Generation, Transmission and Distribution. 1991;138(1):78. Available from: https://dx.doi.org/10.1049/ip-c.1991.0010
13. Jasmon GB, Lee LHCC. Distribution network reduction for voltage stability analysis and loadflow calculations. International Journal of Electrical Power & Energy Systems. 1991;13(1):9–13. Available from: https://dx.doi.org/10.1016/0142-0615(91)90011-j
14. Das D, Nagi HS, Kothari DP. Novel method for solving radial distribution networks. In: IEE Proceedings on Generation Transmission and Distribution, 4. (Vol. 141, pp. 291-298) 1994.
15. Haque M. Efficient load-flow method for distribution systems with radial or mesh configuration. IEE Proceedings on Generation, Transmission, Distribution. 1996;143(1):33–39.
16. Eminoglu U, Hocaoglu MH. A new power flow method for radial distribution systems including voltage dependent load models. Electric Power Systems Research. 2005;76:106–114. Available from: https://dx.doi.org/10.1016/j.epsr.2005.05.008
17. Prasad K, Sahoo NC, Chaturvedi A, Ranjan R. A Simple Approach for Branch Current Computation in Load Flow Analysis of Radial Distribution Systems. International Journal of Electrical Engineering & Education. 2007;44(1):49–63. Available from: https://dx.doi.org/10.7227/ijeee.44.1.6
18. Ghosh S, Sherpa K. An efficient method for load−flow solution of radial distribution networks. International Journal of Electrical and Computer Engineering. 2008;2(9):2094–2101.
19. Sivanagaraju S, Rao JV, Giridhar M. A loop based load flow method for weakly meshed distribution network. ARPN Journal of Engineering and Applied Sciences. 2008;3(4):55–59.
20. Kumar A, Aravindhababu P. An improved power flow technique for distribution systems. Journal of Computer Science, Informatics and Electrical Engineering. 2009;3(1).
21. Augugliaro A, Dusonchet L, Favuzza S, Ippolito MG, Sanseverino ER. A backward sweep method for power flow solution in distribution networks. International Journal of Electrical Power & Energy Systems. 2010;32(4):271–280. Available from: https://dx.doi.org/10.1016/j.ijepes.2009.09.007
22. Sharma DP, Chaturvedi A, Purohit G, Prasad G. An improved mechanism of a leaf node identification for radial distribution network. IEEE Power and Energy Conference at Illinois. 2011. Available from: https://doi.org/10.1109/PECI.2011.5740477
23. Afolabi OA, Ali WH, Cofie P, Fuller J, Obiomon P, Kolawole ES. Analysis of the Load Flow Problem in Power System Planning Studies. Energy and Power Engineering. 2015;07(10):509–523. Available from: https://dx.doi.org/10.4236/epe.2015.710048
24. AbdElhafez AA, Alruways SH, Alsaif YA, Althobaiti MF, AlOtaibi AB, Alotaibi NA. Reactive Power Problem and Solutions: An Overview. Journal of Power and Energy Engineering. 2017;05(05):40–54. Available from: https://dx.doi.org/10.4236/jpee.2017.55004

© 2020 Shakil, Rashid, Hussain, Umer. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

## DON'T MISS OUT!

Subscribe now for latest articles and news.