• P-ISSN 0974-6846 E-ISSN 0974-5645

# Indian Journal of Science and Technology

## Article

• VIEWS 128
• PDF 46

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 15, Pages: 1566-1576

Original Article

## Propagation of Elastic Waves along a Cylindrical Rod of Micropolar Elastic Solid with Stretch under Impedance Boundary Conditions

Received Date:05 February 2024, Accepted Date:19 March 2024, Published Date:13 April 2024

## Abstract

Objective: The objective of this article is to derive the dispersion relations of elastic waves along a cylindrical rod of homogeneous, isotropic micropolar elastic solid with stretch under impedance boundary conditions. Method: The basic equations and constitutive relations are converted into cylindrical coordinates and solved by adopting the method of plane harmonic solution. Findings: Displacements, micro rotations, and micro stretch relations are derived analytically. The dispersion relations pertaining to elastic waves with using impedance boundary conditions also derived analytically and these relations are compared with the results of Tomar. Novelty: With the use of the MATLAB program, the effects of impedance parameters, micropolarity and stretch are discussed for a particular model. The speed of the elastic wave is proportional to the ratio of the impedance parameter in microstretch elastic solids, but there is no significant effect of the impedance ratio in micropolar elastic solids.

Keywords: Elastic Waves, Cylindrical rod, Micropolarity, Micro stretch, Impedance Boundary Conditions

## References

1. Anya AI, Ofe U, Khan A. Mathematical Modeling of Waves in a Porous Micropolar Fibrereinforced Structure and Liquid Interface. Journal of the Nigerian Society of Physical Sciences. 2022;4(3):1–6. Available from: https://dx.doi.org/10.46481/jnsps.2022.823
2. Rani N, Garg S. Study of Waves Propagating in Anisotropic Homogeneous Microstretch Elastic Medium. Communications in Mathematics and Applications. 2023;14(1):37–48. Available from: https://dx.doi.org/10.26713/cma.v14i1.2287
3. Chirilă A, Marin M. Wave propagation in diffusive microstretch thermoelasticity. Mathematics and Computers in Simulation. 2021;189:99–113. Available from: https://dx.doi.org/10.1016/j.matcom.2020.08.012
4. Singh D, Garg M, Tomar SK. Plane waves in microstretch elastic solid with voids. Mathematics and Mechanics of Solids. 2022;28(6):1517–1541. Available from: https://dx.doi.org/10.1177/10812865221119826
5. Garg M, Singh D, Tomar SK. Wave propagation in generalized thermo-microstretch elastic solid containing voids. Journal of Thermal Stresses. 2023;46(12):1396–1416. Available from: https://dx.doi.org/10.1080/01495739.2023.2256814
6. Schmidt K, Thöns‐Zueva A. Impedance boundary conditions for acoustic time‐harmonic wave propagation in viscous gases in two dimensions. Mathematical Methods in the Applied Sciences. 2022;45(12):7404–7425. Available from: https://dx.doi.org/10.1002/mma.8249
7. Somaiah K, Kumar AR. Rayleigh Wave Propagation at Viscous Liquid/Micropolar Micro-stretch Elastic Solid. Communications in Mathematics and Applications. 2023;14(1):89–103. Available from: https://dx.doi.org/10.26713/cma.v14i1.1935
8. Malischewsky P, Breazeale MA. Surface Waves and Discontinuities. The Journal of the Acoustical Society of America. 1990;88(1):588. Available from: https://dx.doi.org/10.1121/1.399904
9. Godoy E, Durán M, Nédélec JC. On the existence of surface waves in an elastic half-space with impedance boundary conditions. Wave Motion. 2012;49(6):585–594. Available from: https://dx.doi.org/10.1016/j.wavemoti.2012.03.005
10. Tomar SK, Kumar R. Elastic wave propagation in a cylindrical bore situated in a micropolar elastic medium with stretch. Proceedings - Mathematical Sciences. 1999;109(4):425–433. Available from: https://dx.doi.org/10.1007/bf02838003