• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 11, Pages: 1097-1106

Original Article

Prostate Cancer Survival Prediction and Treatment Recommendation: A Machine Learning Perspective

Received Date:14 December 2023, Accepted Date:08 February 2024, Published Date:07 March 2024


Objective: Prostate cancer, a formidable life-threatening ailment predominantly affecting males, ranks as the third most prevalent global tumor. Its formidable nature arises from the persistent challenges encountered in early detection, often leading to delayed diagnoses and more advanced disease stages. The primary objective is to harness the power of advanced machine learning techniques for the prediction of patient survivability in prostate cancer cases. Furthermore, the study aims to identify a set of treatments pivotal for ensuring positive survival rates. Methods: This investigation leverages a comprehensive retrospective dataset comprising 410 cases of prostate cancer, collected from a Cancer Centre in New Delhi. This dataset encompasses vital clinical and treatment attributes. Models, including Artificial Neural Networks (ANN), Adaboost, Random Forest, etc., are thoroughly evaluated. In addition, the Generalized Sequential Pattern (GSP) algorithm is utilized to scrutinize the treatment attributes, thereby uncovering frequent patterns and their correlation with survival rates. Findings: The ANN model emerges as the most promising, exhibiting an impressive 84.14% accuracy. The findings stemming from these classification techniques, as well as the insights garnered through sequential mining, underscore the pivotal role of machine learning in the prognostication of prostate cancer. This advancement holds the potential to transform precision medicine and enhance patient care strategies on a global scale. Novelty: The study used clinical dataset to predict the survival of cancer patients using neural networks. GSP algorithm is also modified to uncover frequent treatment patterns in patients.

Keywords: Artificial Neural Network, Cancer, Machine learning, Sequence mining, Survival analysis


  1. Shariat SF, Roehrborn CG. Using biopsy to detect prostate cancer. Reviews in urology. 2008;10(4):262. Available from: https://pubmed.ncbi.nlm.nih.gov/19145270/
  2. Kaur I, Doja MN, Ahmad T. Time-range based sequential mining for survival prediction in prostate cancer. Journal of Biomedical Informatics. 2020;110:103550. Available from: https://doi.org/10.1016/j.jbi.2020.103550
  3. Thongpim N, Choksuchat C, Bejrananda T, Matayong S. On Predicting Survival Opportunities for Prostate Cancer by COX Regression in PSU Patients Data. 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). 2020;p. 775–778. Available from: https://doi.org/10.1109/ECTI-CON49241.2020.9158318
  4. Nezhad MZ, Sadati N, Yang K, Zhu D. A Deep Active Survival Analysis approach for precision treatment recommendations: Application of prostate cancer. Expert Systems with Applications. 2019;115:16–26. Available from: https://doi.org/10.1016/j.eswa.2018.07.070
  5. Wen H, Li S, Li W, Li J, Yin C. Comparision of Four Machine Learning Techniques for the Prediction of Prostate Cancer Survivability. 2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). 2018;p. 112–116. Available from: http://dx.doi.org/10.1109/ICCWAMTIP.2018.8632577
  6. Li R, Shinde A, Liu A, Glaser S, Lyou Y, Yuh B, et al. Machine Learning–Based Interpretation and Visualization of Nonlinear Interactions in Prostate Cancer Survival. JCO Clinical Cancer Informatics. 2020;4(4):637–646. Available from: https://pubmed.ncbi.nlm.nih.gov/32673068/
  7. Lee YJ, Mangasarian OL, Wolberg WH. Survival-time classification of breast cancer patients. Computational Optimization and Applications. 2003;25:151–166. Available from: https://doi.org/10.1023/A:1022953004360
  8. SEER Cancer Statistics Review. National Cancer Institute, Bethesda. 1975.
  9. Qayyum A, Qadir J, Bilal M, Al-Fuqaha A. Secure and Robust Machine Learning for Healthcare: A Survey. IEEE Reviews in Biomedical Engineering. 2021;14:156–180. Available from: https://doi.org/10.1109/RBME.2020.3013489
  10. Kaur I, Doja MN, Ahmad T. An Empirical Analysis of Survival Predictors for Cancer Using Machine Learning. In: Advances in Intelligent Systems and Computing. (Vol. 1, pp. 203-212) Springer Singapore. 2022.
  11. Campbell T, Srivastava S. Exploration of Classification Techniques as a Treatment Decision Support Tool for Patients with Uterine Fibroids. International Workshop on Data Mining for HealthCare Management. . Available from: https://conservancy.umn.edu/handle/11299/215828
  12. Malhotra K, Navathe SB, Chau DH, Hadjipanayis C, Sun J. Constraint based temporal event sequence mining for Glioblastoma survival prediction. Journal of Biomedical Informatics. 2016;61:267–275. Available from: https://doi.org/10.1016/j.jbi.2016.03.020
  13. Laxminarayan P, Alvarez SA, Ruiz C, Moonis M. Mining Statistically Significant Associations for Exploratory Analysis of Human Sleep Data. IEEE Transactions on Information Technology in Biomedicine. 2006;10(3):440–450. Available from: https://doi.org/10.1109/titb.2006.872065
  14. Lu J, Hales A, Rew D, Keech M, Fröhlingsdorf C, Mills-Mullett A, et al. Data Mining Techniques in Health Informatics: A Case Study from Breast Cancer Research. In: Information Technology in Bio- and Medical Informatics. (Vol. 6, pp. 56-70) Springer International Publishing. 2015.
  15. Teo MY, Rathkopf DE, Kantoff P. Treatment of Advanced Prostate Cancer. Annual Review of Medicine. 2019;70(1):479–499. Available from: https://doi.org/10.1146/annurev-med-051517-011947


© 2024 Ahuja et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.