• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 23, Pages: 1982-1992

Original Article

PVA/GO-ZnO hybrid nanocomposites: Synthesis, Analysis and Applications

Received Date:01 April 2021, Accepted Date:24 May 2021, Published Date:12 July 2021


Objective: To prepare Poly vinyl alcohol (PVA) nanocomposites with novel GO-ZnO hybrid Nano filler and test its efficacy and applications. Methods: GO-ZnO hybrid nanocomposite filler was synthesized by modified hummer’s method. Polymer nanocomposite films were prepared by solution casting method. Synthesis of GO-ZnO hybrid procedure is explained in detail. ZnO with average size of 26.74 nm were equally anchored on the GO surface. The properties of the PVA film and the PVA/Graphene Oxide/Zinc oxide composite film were analyzed by electrical, thermo mechanical & spectroscopic analysis. Findings: The results showed that the incorporation of graphene oxide and zinc oxide into the PVA matrix resulted in enhanced mechanical properties and thermal stability of PVA composite films. The tensile strength increases from 3.84 MPa of neat PVA to 10.48 MPa of PVA-0.05% GO-ZnO and Young’s modulus increases from 104.407 to 106.765 MPa. The elongation behavior of the Polymer is increased by the addition of Nano filler and it varies from 15.94 Mpa of pure PVA polymer film to 239.52 MPa of 1% loading -GO-ZnO hybrid filler. Such an enormous improvement in the mechanical properties at such low stacking of GO-ZnO can be credited to a property of GO-ZnO hybrid nano-filler. DC conductivity studies were also under taken on the samples and the conductivity was found to be 2.89510-6 Scm􀀀1 for 5% loading of nano particle while pure PVA is observed as 9.95210-8.

Keywords: GOZnO; Hybrid; filler; nanocomposite; PVA; Electrical Conductivity


  1. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, et al. Polymer nanocomposite dielectrics - the role of the interface. IEEE Transactions on Dielectrics and Electrical Insulation. 2005;12(4):629–643. Available from: https://dx.doi.org/10.1109/tdei.2005.1511089
  2. Starr FW, Schrøder TB, Glotzer SC. Molecular Dynamics Simulation of a Polymer Melt with a Nanoscopic Particle. Macromolecules. 2002;35(11):4481–4492. Available from: https://dx.doi.org/10.1021/ma010626p
  3. Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, et al. Current issues in research on structure–property relationships in polymer nanocomposites. Polymer. 2010;51(15):3321–3343. Available from: https://dx.doi.org/10.1016/j.polymer.2010.04.074
  4. Lee C, Wei X, Kysar JW, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321(5887):385–388. Available from: https://dx.doi.org/10.1126/science.1157996
  5. Gómez-Navarro C, Burghard M, Kern K. Elastic Properties of Chemically Derived Single Graphene Sheets. Nano Letters. 2008;8(7):2045–2049. Available from: https://dx.doi.org/10.1021/nl801384y
  6. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters. 2008;8(3):902–907. Available from: https://dx.doi.org/10.1021/nl0731872
  7. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications. 2008;146:351–355. Available from: https://dx.doi.org/10.1016/j.ssc.2008.02.024
  8. Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-Based Ultracapacitors. Nano Letters. 2008;8(10):3498–3502. Available from: https://dx.doi.org/10.1021/nl802558y
  9. Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature. 2005;438(7065):201–204. Available from: https://dx.doi.org/10.1038/nature04235
  10. Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, et al. Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets. Chemistry of Materials. 2009;21(15):3514–3520. Available from: https://dx.doi.org/10.1021/cm901247t
  11. Shen J, Hu Y, Li C, Qin C, Shi M, Ye M. Layer-by-Layer Self-Assembly of Graphene Nanoplatelets. Langmuir. 2009;25(11):6122–6128. Available from: https://dx.doi.org/10.1021/la900126g
  12. Huang Y, Ding J, Chen X, Sun X. Synthesis, Mechanical Property, and Thermal Stability of Reduced Graphene Oxide-Zinc Oxide/Cyanate Ester/Bismaleimide Resin Composites. Journal of .Adhesion.Science.Technology. 2016;31:1348–1360. Available from: https://doi.org/10.1080/01694243.2016.1256634
  13. Ramezanzadeh B, Attar MM. Studying the corrosion resistance and hydrolytic degradation of an epoxy coating containing ZnO nanoparticles. Materials Chemistry and Physics. 2011;130(3):1208–1219. Available from: https://dx.doi.org/10.1016/j.matchemphys.2011.08.065
  14. Kumar SV, Huang NM, Yusoff N, Lim HN. High performance magnetically separable graphene/zinc oxide nanocomposite. Materials Letters. 2013;93:411–414. Available from: https://dx.doi.org/10.1016/j.matlet.2012.09.089
  15. DeMerlis CC, Schoneker DR. Review of the oral toxicity of polyvinyl alcohol (PVA) Food and Chemical Toxicology. 2003;41(3):319–326. Available from: https://dx.doi.org/10.1016/s0278-6915(02)00258-2
  16. Butnaru E, Cheaburu CN, Yilmaz O, Pricope GM, Vasile C. Poly(vinyl alcohol)/chitosan/montmorillonite nanocomposites for food packaging applications. High Performance Polymers. 2016;28:1124–1138. Available from: https://dx.doi.org/10.1177/0954008315617231
  17. Pavlidou S, Papaspyrides CD. A review on polymer–layered silicate nanocomposites. Progress in Polymer Science. 2008;33(12):1119–1198. Available from: https://dx.doi.org/10.1016/j.progpolymsci.2008.07.008
  18. Selvi J, Parthasarathy V, Mahalakshmi S, Anbarasan R, Daramola MO, Kumar PS. Optical, electrical, mechanical, and thermal properties and non-isothermal decomposition behavior of poly(vinyl alcohol)–ZnO nanocomposites. Iranian Polymer Journal. 2020;29(5):411–422. Available from: https://dx.doi.org/10.1007/s13726-020-00806-8
  19. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, et al. Flammability Properties of Polymer−Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites†. Chemistry of Materials. 2000;12(7):1866–1873. Available from: https://dx.doi.org/10.1021/cm0001760
  20. Triantafyllidis KS, LeBaron PC, Park I, Pinnavaia TJ. Epoxy−Clay Fabric Film Composites with Unprecedented Oxygen-Barrier Properties. Chemistry of Materials. 2006;18(18):4393–4398. Available from: https://dx.doi.org/10.1021/cm060825t
  21. Yu Y, Zheng J, Li J, Lu L, Yan J, Zhang L, et al. Applications of two-dimensional materials in food packaging. Trends in Food Science & Technology. 2021;110:443–457. Available from: https://doi.org/10.1016/j.tifs.2021.02.021
  22. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology. 2008;3(2):101–105. Available from: https://dx.doi.org/10.1038/nnano.2007.451
  23. Godovsky D. Biopolymers· PVA Hydrogels Anionic Polymerisation Nanocomposites . Advances in Polymer. Science. 2000;153:163–204. Available from: 10.1007/3-540-46414-X
  24. Qian XF, Yin J, Huang JC, Yang YF, Guo XX, Zhu ZK. The preparation and characterization of PVA/Ag2S nanocomposite. Mater.Chem.Phys. 2001;68(1-3):288–289. Available from: https://doi.org/10.1016/S0254-0584(00)00288-1
  25. Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechnology. 2009;4(4):217–224. Available from: https://dx.doi.org/10.1038/nnano.2009.58
  26. Kumar RV, Koltypin Y, Cohen YS, Cohen Y, Aurbach D, Palchik O, et al. Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. Journal of Materials Chemistry. 2000;10(5):1125–1129. Available from: https://dx.doi.org/10.1039/b000440p
  27. Strawhecker KE, Manias E. Structure and Properties of Poly(vinyl alcohol)/Na+Montmorillonite Nanocomposites. Chemistry of Materials. 2000;12(10):2943–2949. Available from: https://dx.doi.org/10.1021/cm000506g
  28. Valdes L. Resistivity Measurements on Germanium for Transistors. Proceedings of the IRE. 1954;42(2):420–427. Available from: https://dx.doi.org/10.1109/jrproc.1954.274680
  29. Schuetze AP, Lewis W, Brown C, Geerts WJ. A laboratory on the four-point probe technique. American Journal of Physics. 2004;72(2):149–153. Available from: https://dx.doi.org/10.1119/1.1629085
  30. Rao JK, Raizada A, Ganguly D, Mankad MM, Satayanarayana SV, Madhu GM. Investigation of structural and electrical properties of novel CuO–PVA nanocomposite films. Journal of Materials Science. 2015;50(21):7064–7074. Available from: https://dx.doi.org/10.1007/s10853-015-9261-0
  31. Selvi J, Mahalakshmi S, Parthasarathy V. Synthesis, Structural, Optical, Electrical and Thermal Studies of Poly(vinyl alcohol)/CdO Nanocomposite Films. Journal of Inorganic and Organometallic Polymers and Materials. 2017;27(6):1918–1926. Available from: https://dx.doi.org/10.1007/s10904-017-0662-1
  32. Yu YH, Lin CY, Yeh JM, Lin WH. Preparation and properties of poly(vinyl alcohol)clay nanocomposite material. Polymer. 2003;44(12):3553–3560. Available from: 10.1016/S0032-3861(03)00062-4
  33. Du X, Wang S, Liu Y, Lu M, Wu K, Lu M. Self-assembly of free-standing hybrid film based on graphene and zinc oxide nanoflakes for high-performance supercapacitors. Journal of Solid State Chemistry. 2019;277:441–447. Available from: https://doi.org/10.1016/j.jssc.2019.06.003
  34. Zhang R, Wang Y, Ma D, Ahmed S, Qin W, Liu Y. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. Ultrasonics sonochemistry. 2019;59. Available from: 10.1016/j.ultsonch.2019.104731


© 2021 Padinhattayil & Rai. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.