• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 40, Pages: 3462-3470

Original Article

Rate Equations Model to Simulate the Dual Generation of Nd+3: YAG Passive Q-Switched Laser Pulses

Received Date:02 August 2023, Accepted Date:04 September 2023, Published Date:27 October 2023


Objective: Rate equations model has been formulated to simulate the simultaneous generation of two passive Q-switching pulses using one active medium. It is possible to separate them and employ each pulse in practical applications. Methods: The model was solved numerically by used Rung–kutta–Fahelberg method. This model was tested in the study of the effect of saturable absorber ions concentration on the duration, energy, and power of the dual pulses which are generation by passive Q-switching of . Finding: The results of the numerical solution showed that the temporal behavior of photons density of passive Q-switching pulses and the population inversion density of active medium is good agreement with studies which dealt the theory of passive Q-switching, which enhances reliability using this model. Novelty: The mathematical model included six rate equations instead of three or four rate equations. It is based to simulate the spectrum lines as a 4-level and 3-level energy schemes of active medium to get two passive Q-switching laser pulses at the same time (instantaneously) instead of one pulse. Can be separated into two pulses to employ each of them in applications.

Keywords: Laser; Passive Q-Switching; Solid state lasers; Nd+3


  1. Pérez-Alonso V, Weigand R, Sánchez-Balmaseda M, Pérez JMG. Powerful algebraic model to design Q-switched lasers using saturable absorbers. Optics & Laser Technology. 2023;164:1–13. Available from: https://doi.org/10.1016/j.optlastec.2023.109506
  2. Zhang X, Zhong K, Qiao H, Li F, Zheng Y, Xu D, et al. Passively Q-Switched Dual-Wavelength Laser Operation With Coaxially End-Pumped Composite Laser Materials. IEEE Photonics Journal. 2021;13(6):1–7. Available from: https://doi.org/10.1109/JPHOT.2021.3120000
  3. Wang J, Xie L, Wang Y, Lan Y, Wu P, Lv J, et al. High-damage vanadium pentoxide film saturable absorber for sub-nanosecond Nd:YAG lasers. Infrared Physics & Technology. 2023;129:104580. Available from: https://doi.org/10.1016/j.infrared.2023.104580
  4. Zeng KK, Wu X, Jiang F, Zhang J, Kong J, Shen J, et al. Experimental research on micro hole drilling of polycrystalline Nd:YAG. Ceramics International. 2022;48(7):9658–9666. Available from: https://doi.org/10.1016/j.ceramint.2021.12.165
  5. Zhao ZY, Cai ZT, Zhao CM, Zhang J. Solar-pumped 1061-/1064-nm dual-wavelength Nd:YAG monolithic laser. Journal of Photonics for Energy. 2023;62(3). Available from: https://doi.org/10.1117/1.OE.62.3.036103
  6. Payziyev S, Sherniyozov A. Influence of thermal population of lower laser levels on the performance of end-side-pumped Ce:Nd:YAG solar laser. Journal of Photonics for Energy. 2022;12(04):44501. Available from: https://doi.org/10.1117/1.JPE.12.044501
  7. Giese A, Körber M, Kostourou K, Kopf D, Kottcke M, Lohbreier J, et al. Passively Q-switched sub-100 ps Yb3+:YAG/Cr4+:YAG microchip laser: experimental results and numerical analysis. Solid State Lasers XXXII: Technology and Devices. 2023;12399:187–197. Available from: https://doi.org/10.1117/12.2649057
  8. Tang J, Bai Z, Zhang D, Qi Y, Ding J, Wang Y, et al. Advances in All-Solid-State Passively Q-Switched Lasers Based on Cr4+:YAG Saturable Absorber. Photonics. 2021;8(4):1–14. Available from: https://doi.org/10.3390/photonics8040093
  9. Tanaka H, Kränkel C, Kannari F. Transition-Metal-Doped Saturable Absorbers For Passive Q-Switching Of Visible Lasers. Optical Materials Express. 2020;10(8):1827–1842. Available from: https://doi.org/10.1364/OME.395893
  10. Hassan AA, Wahid SNA, Hamood HY. Numerical modeling of passively Q-switched Nd: YAG lasers with Cr+4: YAG as a saturable absorber. Journal of Xidian University. 2021;15(2):36–42. Available from: https://doi.org/10.37896/jxu15.2/005
  11. Li M, Qin Y, Wang C, Liu X, Long S, Tang X, et al. Nonuniform pumped passively Q-switched laser using Nd:YAG/Cr4+:YAG composite crystal with high-pulse energy. Optical Engineering. 2019;58(03). Available from: https://doi.org/10.1117/1.OE.58.3.036106
  12. Hussein TM, Salih AKM. Simulation of Effective Beam Area Ratio Effect on Characteristics of Passive Q-Switched Fiber Doped Laser. Journal of Optoelectronics Laser. 2022;41(10):452–461. Available from: http://www.gdzjg.org/index.php/JOL/article/view/1286
  13. Zhang X, Zhong K, Qiao H, Zheng Y, Li F, Xu D, et al. A passively Q-switched dual-wavelength laser with pulsed LD coaxial end-pumped configuration. Advanced Lasers, High-Power Lasers, and Applications XIII. 2022;12310. Available from: https://doi.org/10.1117/12.2641747
  14. Tarkashvand M, Farahbod AH, Hashemizadeh SA. Study of the Spatiotemporal Behavior of LED-Pumped Ce:Nd:YAG Laser. International Journal of Optics and Photonics. 2020;14(1):75–84. Available from: https://ijop.ir/article-1-396-en.pdf
  15. Zhang B, Chen Y, Wang P, Wang Y, Liu J, Hu S, et al. Direct bleaching of a Cr4+:YAG saturable absorber in a passively Q-switched Nd:YAG laser. Applied Optics. 2018;57(16):4595–4600. Available from: https://doi.org/10.1364/AO.57.004595
  16. Koechner W. Solid-State Laser Engineering. (pp. 1-750) Springer . 2013.


© 2023 Abdulhussain & Salih. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.