• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 13, Pages: 1030-1037

Original Article

Refining the Accuracy of Chest X-Ray Image Classification Through Layer and Activation Function Optimization

Received Date:19 January 2023, Accepted Date:04 March 2023, Published Date:06 April 2023


Objective: The goal of this article is to provide the Convolutional Neural Network (CNN)-based algorithm carried out to a Chest X-Ray (CXR) dataset to classifies pneumonia. Method: This study explores reduced layers in architecture of Deep Learning Model (DLM). A framework for classifying Chest- X-Ray image dataset with Deep Learning Model (CXR-DLM) proposed to extract features and detect COVID-19. Finding: Deep learning-based models have an exceptional ability to offer an accurate and efficient system for COVID-19 investigations. However, deep learning models affect the classification of small dataset. CXR-DLM solve this problem by designing with all layers and reduced layers learned during the training phase. The 60% of the CXR images carried for training phase and the remaining 40% for testing phase respectively. The testing images achieve an accuracy 99.57%. CXR normal (1341 images) and Covid (3875 images) collected from Kaggle dataset. Novelty: The proposed work CXR-DLM support in the field of radiological imaging of COVID-19 reduces false positive and false negative errors in the detection and diagnosis of this disease. In this work determined exclusive chance to provide rapid, safe diagnostic services to patients then classification using CT images.

Keywords: Deep learning; Covid19; CXR images; CXRDLM


  1. Alimadadi A, Aryal S, Manandhar I, Munroe PB, Joe B, Cheng X. Artificial intelligence and machine learning to fight COVID-19. Physiological Genomics. 2020;52(4):200–202. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32216577
  2. Syed HH, Khan MA, Tariq U, Armghan A, Alenezi F, Khan JA, et al. A Rapid Artificial Intelligence-Based Computer-Aided Diagnosis System for COVID-19 Classification from CT Images. Behavioural Neurology. 2021;2021:1–13. Available from: https://dx.doi.org/10.1155/2021/2560388
  3. Khan MA, Azhar M, Ibrar K, Alqahtani A, Alsubai S, Binbusayyis A, et al. COVID-19 Classification from Chest X-Ray Images: A Framework of Deep Explainable Artificial Intelligence. Computational Intelligence and Neuroscience. 2022;2022:1–14. Available from: https://dx.doi.org/10.1155/2022/4254631
  4. Khan M, Alhaisoni M, Tariq U, Hussain N, Majid A, Damaševičius R, et al. COVID-19 Case Recognition from Chest CT Images by Deep Learning, Entropy-Controlled Firefly Optimization, and Parallel Feature Fusion. Sensors. 21(21):7286. Available from: https://dx.doi.org/10.3390/s21217286
  5. Bullock J, Luccioni A, Pham KH, Lam CSN, Luengo-Oroz M. Mapping the landscape of Artificial Intelligence applications against COVID-19. Journal of Artificial Intelligence Research. 2020;69:807–845. Available from: https://doi.org/10.1613/jair.1.12162
  6. Bhardwaj P, Gupta PK, Panwar H, Siddiqui MK, Morales-Menendez R, Bhaik A. Application of Deep Learning on Student Engagement in e-learning environments. Computers & Electrical Engineering. 2021;93:107277. Available from: https://doi.org/10.1016/j.compeleceng.2021.107277
  7. Alahmari SS, Altazi B, Hwang J, Hawkins S, Salem T. A Comprehensive Review of Deep Learning-Based Methods for COVID-19 Detection Using Chest X-Ray Images. IEEE Access. 2022;10:100763–100785. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9895426
  8. Alghamdi HS, Amoudi G, Elhag S, Saeedi K, Nasser J. Deep Learning Approaches for Detecting COVID-19 From Chest X-Ray Images: A Survey. IEEE Access. 2021;9:20235–20254. Available from: https://doi.org/10.1109/ACCESS.2021.3054484
  9. Zhou DX. Theory of deep convolutional neural networks: Downsampling. Neural Networks. 2020;124:319–327. Available from: https://doi.org/10.1016/j.neunet.2020.01.018
  10. Zhang Y, Khan M, Zhu, Wang S. SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition. 2023. Available from: https://doi.org/10.32604/csse.2023.034172
  11. Pasa F, Golkov V, Pfeiffer F, Cremers D, Pfeiffer D. Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization. Scientific Reports. 2019;9(1). Available from: https://doi.org/10.1038/s41598-019-42557-4
  12. Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D. Self-supervised learning for medical image analysis using image context restoration. Medical Image Analysis. 2019. Available from: https://doi.org/10.1016/j.media.2019.101539
  13. Khan MA, Azhar M, Ibrar K, Alqahtani A, Alsubai S, Binbusayyis A, et al. COVID-19 Classification from Chest X-Ray Images: A Framework of Deep Explainable Artificial Intelligence. Computational Intelligence and Neuroscience. 2022;2022:1–14. Available from: https://dx.doi.org/10.1155/2022/4254631
  14. Khan A, Alhaisoni M, Nazir M, Alqahtani M, Binbusayyis A, Alsubai A, et al. A healthcare system for COVID19 classification using multi-type classical features selection. 2023. Available from: https://dx.doi.org/10.32604/cmc.2023.032064
  15. Hamza A, Khan MA, Wang SH, Alhaisoni M, Alharbi M, Hussein HS, et al. COVID-19 classification using chest X-ray images based on fusion-assisted deep Bayesian optimization and Grad-CAM visualization. Frontiers in Public Health. 2022;10. Available from: https://dx.doi.org/10.3389/fpubh.2022.1046296
  16. Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A. COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognition Letters. 2020;138:638–643. Available from: https://doi.org/10.1016/j.patrec.2020.09.010
  17. Hamza A, Khan MA, Wang SH, Alqahtani A, Alsubai S, Binbusayyis A, et al. COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization. Frontiers in Public Health. 2022;10. Available from: https://doi.org/10.3389/fpubh.2022.948205
  18. Cao Z, Huang J, He X, Zong Z. BND-VGG-19: A deep learning algorithm for COVID-19 identification utilizing X-ray images. Knowledge-Based Systems. 2022;258:110040. Available from: https://doi.org/10.1016/j.knosys.2022.110040
  19. Sharma S, Gupta S, Gupta D, Rashid J, Juneja S, Kim J, et al. Performance Evaluation of the Deep Learning Based Convolutional Neural Network Approach for the Recognition of Chest X-Ray Images. Frontiers in Oncology. 2022;12. Available from: https://doi.org/10.3389/fonc.2022.932496


© 2023 Kalaiselvi & Kasthuri. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.