• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 6, Pages: 556-565

Original Article

Dynamic Weighted Cumulative Residual Entropy Estimators for Laplace Distribution: Bayesian Approach

Received Date:06 July 2023, Accepted Date:13 January 2024, Published Date:08 February 2024


Objectives: To develop Bayesian estimators of dynamic weighted cumulative residual entropy (DWCRE) for Laplace distribution and to investigate posterior risks using various priors and loss functions. Methods: Weighted entropy measure of information is provided by a probabilistic experiment whose basic events are described by their objective probabilities and some qualitative (objective or subjective) weights. In this paper, we have used priors (Jeffrey’s, Hartigan, Uniform and Gumble Type II) and several loss functions. Findings: Bayesian estimators and associated posterior risks for Laplace distribution have been derived for different priors and loss functions. Monte Carlo Simulation study and graphical analyses have also been presented along with the conclusion. Through the comprehensive simulation study in the paper, it has been observed that Hartigan prior is better than other priors in terms of the posterior risk whereas Uniform prior has always higher posterior risk. Novelty: The introduction of new Bayesian estimators and their posterior risks for dynamic weighted cumulative residual entropy (DWCRE) of Laplace distribution.

Keywords: Bayesian estimators, Laplace distribution, Fisher information matrix, Loss functions, Priors


  1. Al-Babtain AA, Hassan AS, Zaky AN, Elbatal I, Elgarhy M. Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods. AIMS Mathematics. 2021;6(4):3889–3914. Available from: https://doi.org/10.3934/math.2021231
  2. Shah S, Hazarika PJ, Chakraborty S. A new alpha skew Laplace distribution: properties and its applications. International Journal of Agricultural & Statistical Sciences. 2020;16(1):1–10. Available from: https://www.connectjournals.com/file_html_pdf/3158601H_1-10A.pdf
  3. Helmy BA, Hassan AS, El-Kholy AK, Bantan RAR, Elgarhy M. Analysis of information measures using generalized type-Ⅰ hybrid censored data. AIMS Mathematics. 2023;8(9):20283–20304. Available from: https://doi.org/10.3934/math.20231034
  4. Shaikh FF, Patel MN. Bayesian estimation and prediction for exponentiated logistic distribution based on lower records. International Journal of Agricultural & Statistical Sciences. 2021;17(2):845–853. Available from: https://connectjournals.com/03899.2021.17.845
  5. Al-Babtain AA, Elbatal I, Chesneau C, Elgarhy M. Estimation of different types of entropies for the Kumaraswamy distribution. PLOS ONE. 2021;16(3):1–21. Available from: https://doi.org/10.1371/journal.pone.0249027
  6. Bantan RAR, Elgarhy M, Chesneau C, Jamal F. Estimation of Entropy for Inverse Lomax Distribution under Multiple Censored Data. Entropy. 2020;22(6):1–15. Available from: https://doi.org/10.3390/e22060601
  7. Shrahili M, El-Saeed AR, Hassan AS, Elbatal I, Elgarhy M. Estimation of Entropy for Log-Logistic Distribution under Progressive Type II Censoring. Journal of Nanomaterials. 2022;2022:1–10. Available from: https://doi.org/10.1155/2022/2739606
  8. Almarashi AM, Algarni A, Hassan AS, Zaky AN, Elgarhy M. Bayesian Analysis of Dynamic Cumulative Residual Entropy for Lindley Distribution. Entropy. 2021;23(10):1–15. Available from: https://doi.org/10.3390/e23101256
  9. Savita, Kumar R. Bayesian estimators of dynamic cumulative residual entropy for Laplace distribution. International Journal of Agricultural & Statistical Sciences. 2022;18(Supp-1):2293–2301. Available from: https://connectjournals.com/03899.2022.18.2293
  10. Toomaj A, Crescenzo AD. Connections between Weighted Generalized Cumulative Residual Entropy and Variance. Mathematics. 2020;8(7):1–27. Available from: https://doi.org/10.3390/math8071072


© 2024 Savita & Kumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.