• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 27, Pages: 2786-2796

Original Article

Structural, optical and electrical properties of Aluminum doped ZnO, CuO and their heterojunction fabricated using spin coating and Rf-Sputtering techniques

Received Date:09 June 2020, Accepted Date:14 July 2020, Published Date:31 July 2020


Objectives: The aim of this work is to fabricate and analyze the Aluminum Doped ZnO, Copper Oxide CuO and their heterojunction CuO/ZnO:Al using Spin Coating and Rf-Sputtering techniques. Methods: ZnO:Al was synthesized from a sol-gel precursor and deposited on Indium Tin Oxide-coated glass substrate ITO using spin coating. CuO thin films, on the other hand, were elaborated by RF-sputtering. The characterization of both thin films was performed by means of X-ray diffraction, scanning electron microscopy and UV-visible-NIR double beam spectrophotometer. The CuO/ZnO: Al heterojunction was fabricated and characterized using current voltage, capacitance-voltage and conductancevoltage measurements. Findings: The collected results confirm the rectifying nature of the junction with a built-in voltage Vbi of about 1.6 V.

Keywords: Copper oxide; Aluminum doped Zinc oxide; RF sputtering; spin coating; heterojunction


  1. Oral AY, Menşur E, Aslan MH, Başaran E. The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties. Materials Chemistry and Physics. 2004;83(1):140–144. Available from: https://dx.doi.org/10.1016/j.matchemphys.2003.09.015
  2. Poloju M, Jayababu N, Reddy MVR. Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Materials Science and Engineering: B. 2018;227:61–67. Available from: https://dx.doi.org/10.1016/j.mseb.2017.10.012
  3. Ishizuka S, Kato S, Maruyama T, Akimoto K. Nitrogen Doping into Cu2O Thin Films Deposited by Reactive Radio-Frequency Magnetron Sputtering. Japanese Journal of Applied Physics. 2001;40(Part 1, No. 4B):2765–2768. Available from: https://dx.doi.org/10.1143/jjap.40.2765
  4. Jeong S, Aydil ES. Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition. Journal of Crystal Growth. 2009;311(17):4188–4192. Available from: https://dx.doi.org/10.1016/j.jcrysgro.2009.07.020
  5. Mukhopadhyay AK, Chakraborty AK, Chatterjee AP, Lahiri SK. Galvanostatic deposition and electrical characterization of cuprous oxide thin films. Thin Solid Films. 1992;209(1):92–96. Available from: https://dx.doi.org/10.1016/0040-6090(92)90015-4
  6. Baik DG, Cho SM. Application of sol-gel derived films for ZnO/n-Si junction solar cells. Thin Solid Films. 1999;354(1-2):227–231. Available from: https://dx.doi.org/10.1016/s0040-6090(99)00559-3
  7. Zhang P, Hong RY, Chen Q, Feng WG. On the electrical conductivity and photocatalytic activity of aluminum-doped zinc oxide. Powder Technology. 2014;253:360–367. Available from: https://dx.doi.org/10.1016/j.powtec.2013.12.001
  8. Rühle S, Anderson AY, Barad HN, Kupfer B, Bouhadana Y, Rosh-Hodesh E, et al. All-Oxide Photovoltaics. The Journal of Physical Chemistry Letters. 2012;3(24):3755–3764. Available from: https://dx.doi.org/10.1021/jz3017039
  9. Shiu HY, Tsai CM, Chen SY, Yew TR. Tri-Rung Yew. Solution-processed all-oxide nanostructures for heterojunction solar cells. J. Mater. Chem. 2011;21. Available from: https://doi.org/10.1039/c1jm13303a
  10. AitDads H, Bouzit S, Nkhaili L, Elkissani A, Outzourhit A. Structural, optical and electrical properties of planar mixed perovskite halides/Al-doped Zinc oxide solar cells. Solar Energy Materials and Solar Cells. 2016;148:30–33. Available from: https://dx.doi.org/10.1016/j.solmat.2015.09.063
  11. Ye ZZ, Yang F, Lu YF, Zhi MJ, Tang HP, Zhu LP. ZnO nanorods with different morphologies and their field emission properties. Solid State Communications. 2007;142:425–433. Available from: https://doi.org/10.1016/j.ssc.2007.03.037
  12. Granqvist CG. Transparent conductors as solar energy materials: A panoramic review. Solar Energy Materials and Solar Cells. 2007;91(17):1529–1598. Available from: https://dx.doi.org/10.1016/j.solmat.2007.04.031
  13. Gordon RG. Criteria for Choosing Transparent Conductors. MRS bulletin. 2000;p. 52–57. Available from: https://doi.org/10.1557/mrs2000.151
  14. Ginley DS, Bright C. Transparent Conducting Oxides. MRS Bulletin. 2000;25(8):15–18. Available from: https://dx.doi.org/10.1557/mrs2000.256
  15. Fortunato E, Brida D, Ferreira I, Águas H, Nunes P, Martins R. Production and characterization of large area flexible thin film position sensitive detectors. Thin Solid Films. 2001;383(1-2):310–313. Available from: https://dx.doi.org/10.1016/s0040-6090(00)01610-2
  16. Chopra KL, Major S, Pandya DK. Transparent conductors—A status review. Thin Solid Films. 1983;102:1–46. Available from: https://dx.doi.org/10.1016/0040-6090(83)90256-0
  17. Lehraki N, Aida MS, Abed S, Attaf N, Attaf A, Poulain M. ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties. Current Applied Physics. 2012;12(5):1283–1287. Available from: https://dx.doi.org/10.1016/j.cap.2012.03.012
  18. Chen Z, Shum K, Salagaj T, Zhang W, Strobl K. ZnO Thin Films Synthesized by Chemical Vapor Deposition. In: Applications and Technology Conference. (pp. 4-9) 2010.
  19. Znaidi L, Chauveau T, Tallaire A, Liu F, Rahmani M, Bockelee V, et al. Textured ZnO thin films by sol–gel process: Synthesis and characterizations. Thin Solid Films. 2016;617(b):156–160. Available from: https://dx.doi.org/10.1016/j.tsf.2015.12.031
  20. Tsoutsouva MG, Panagopoulos CN, Papadimitriou D, Fasaki I, Kompitsas M. ZnO thin films prepared by pulsed laser deposition. Materials Science and Engineering: B. 2011;176(6):480–483. Available from: https://dx.doi.org/10.1016/j.mseb.2010.03.059
  21. Shishodia PK, Kim HJ, Wakahara A, Yoshida A, Shishodia G, Mehra RM. Plasma enhanced chemical vapor deposition of ZnO thin films. Journal of Non-Crystalline Solids. 2006;352(23-25):2343–2346. Available from: https://dx.doi.org/10.1016/j.jnoncrysol.2006.01.086
  22. Gao W, Li Z. ZnO thin films produced by magnetron sputtering. Ceramics International. 2004;30(7):1155–1159. Available from: https://dx.doi.org/10.1016/j.ceramint.2003.12.197
  23. Yang P, Wen H, Jian S, Lai Y, Wu S, Chen R. Characteristics of ZnO thin films prepared by radio frequency magnetron sputtering. Microelectronics Reliability. 2008;48(3):389–394. Available from: https://doi.org/10.1016/j.microrel.2007.08.010
  24. Nause J, Nemeth B. Pressurized melt growth of ZnO boules. Semiconductor Science and Technology. 2005;20(4):S45–S48. Available from: https://dx.doi.org/10.1088/0268-1242/20/4/005
  25. Afanasjev V, Bazhan M, Klimenkov B, Mukhin N, Chigirev D. Thin-film heterostructures based on oxides of copper and zinc obtained by RF magnetron sputtering in one vacuum cycle. Journal of Physics: Conference Series. 2016;729(1):012013. Available from: https://dx.doi.org/10.1088/1742-6596/729/1/012013
  26. Chatkaewsueb S, Saysunee N, Tamaekong N. The synthesis and characterization of p-CuO/n-ZnO nanoparticles synthesized by chemical method. Materials Today: Proceedings. 2017;4(5):6111–6117. Available from: https://dx.doi.org/10.1016/j.matpr.2017.06.102
  27. Terasako T, Murakami T, Hyodou A, Shirakata S. Structural and electrical properties of CuO films and n-ZnO/p-CuO heterojunctions prepared by chemical bath deposition based technique. Solar Energy Materials and Solar Cells. 2015;132:74–79. Available from: https://dx.doi.org/10.1016/j.solmat.2014.08.023
  28. Kumar GM, Ilanchezhiyan P, Kumar AM, Shabi TS, Selvan ST, Suresh S, et al. Chemically-derived CuO/In2O3-based nanocomposite for diode applications. CrystEngComm. 2015;17(31):5932–5939. Available from: https://dx.doi.org/10.1039/c5ce00853k
  29. Hoppe M, Ababii N, Postica V, Lupan O, Polonskyi O, Schütt F, et al. CuO-Cu 2 O / ZnO : Al heterojunctions CuO-Cu 2 O / ZnO : Al heterojunctions for selective volatile organic compound detection. Sensors Actuators B Chem. 2018;255(2):1362–1375. Available from: http://dx.doi.org/10.1016/j.snb.2017.08.135
  30. Prabhu RR, Saritha AC, Shijeesh MR, Jayaraj MK. Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique. Materials Science and Engineering: B. 2017;220:82–90. Available from: https://dx.doi.org/10.1016/j.mseb.2017.03.008
  31. Nkhaili L, Elyaagoubi M, Elmansouri A, Khalfi AE, Elfathi A, Ali MA, et al. Optical , and Electrical Characteristics of Zinc Oxide and Copper Oxide Films and Their. Spectroscopy Letters. 2015;48(7). Available from: https://doi.org/10.1080/00387010.2014.897732
  32. Saji KJ, Populoh S, Tiwari AN, Romanyuk YE. Design of p-CuO/n-ZnO heterojunctions by rf magnetron sputtering. physica status solidi (a). 2013;210(7):1386–1391. Available from: https://dx.doi.org/10.1002/pssa.201228293
  33. Drobny VF, Pulfrey L. Properties of reactively-sputtered copper oxide thin films. Thin Solid Films. 1979;61(1):89–98. Available from: https://dx.doi.org/10.1016/0040-6090(79)90504-2
  34. Jannane T, Manoua M, Liba A, Fazouan N, Hichou E, Almaggoussi A, et al. Sol-gel Aluminum-doped ZnO thin films: Synthesis and characterization. Materials Environnments Sciences. 2017;8(1):160–168.
  35. Lauriat JP, Pério P. Adaption d'un ensemble de détection Si(Li) à un diffractometre X. Journal of Applied Crystallography. 1972;5:177–183. Available from: https://dx.doi.org/10.1107/s002188987200915x
  36. Prabhu YT, Rao KV, Kumar VSS, Kumari BS. X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. World Journal of Nano Science and Engineering. 2014;04(01):21–28. Available from: https://dx.doi.org/10.4236/wjnse.2014.41004
  37. Chavan A, Shivaraj BW, Murthy HNN, A V, Holla V, Shandilya S, et al. Parametric Study of Sol Gel Technique for Fabricating ZnO Thin Films. Procedia Materials Science. 2015;10:270–278. Available from: https://dx.doi.org/10.1016/j.mspro.2015.06.050
  38. Dimopoulos T, Peić A, Müllner P, Neuschitzer M, Resel R, Abermann S, et al. Photovoltaic properties of thin film heterojunctions with cupric oxide absorber. Journal of Renewable and Sustainable Energy. 2013;5(1):011205. Available from: https://dx.doi.org/10.1063/1.4791779
  39. Janotti A, Walle CGVd. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics. 2009;72(12):126501. Available from: https://dx.doi.org/10.1088/0034-4885/72/12/126501
  40. Laaziz Y, Bennouna A, Chahboun N, Outzourhit A, Ameziane EL. Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements. Thin Solid Films. 2000;372(1-2):149–155. Available from: https://dx.doi.org/10.1016/s0040-6090(00)00997-4
  41. Musat V, Teixeira B, Fortunato E, Monteiro RCC, Vilarinho P. Al-doped ZnO thin films by sol–gel method. Surface and Coatings Technology. 2004;180-181:659–662. Available from: https://dx.doi.org/10.1016/j.surfcoat.2003.10.112
  42. Pavan M, Rühle S, Ginsburg A, Keller DA, Barad HN, Sberna PM, et al. TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Solar Energy Materials and Solar Cells. 2015;132:549–556. Available from: https://dx.doi.org/10.1016/j.solmat.2014.10.005
  43. Shaaban ER, Yahia IS, El-Metwally EG. Validity of Swanepoel's Method for Calculating the Optical Constants of Thick Films. Acta Physica Polonica A. 2012;121(3):628–635. Available from: https://dx.doi.org/10.12693/aphyspola.121.628
  44. Deepa K, Preetha KC, Murali KV, Dhanya AC, Ragina AJ, Remadevi TL. The effect of various complexing agents on the morphology and optoelectronic properties of chemically deposited ZnS thin films: A comparative study. Optik. 2014;125(19):5727–5732. Available from: https://dx.doi.org/10.1016/j.ijleo.2014.06.028
  45. Alsaad AM, Ahmad AA, Al-Bataineh QM, Bani-Salameh AA, Abdullah HS, Qattan IA, et al. Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films. Materials. 2020;13(7):1737. Available from: https://dx.doi.org/10.3390/ma13071737
  46. Baydogan N, Ozdurmusoglu T, Cimenoglu H, Tugrul AB. Refractive Index and Extinction Coefficient of ZnO:Al Thin Films Derived by Sol-Gel Dip Coating Technique. . Defect and Diffusion Forum. 2013;335:290–293. Available from: DOI:10.4028/www.scientific.net/DDF.334-335.290
  47. Ahmad AA, Alsaad AM, Al-Bataineh QM, Al-Naafa MA. Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Applied Physics A. 2018;124(6). Available from: https://dx.doi.org/10.1007/s00339-018-1875-z
  48. Hussain S, Cao C, Nabi G, Khan WS, Tahir M, Tanveer M, et al. Optical and electrical characterization of ZnO/CuO heterojunction solar cells. Optik. 2017;130:372–377. Available from: https://dx.doi.org/10.1016/j.ijleo.2016.10.099
  49. Zainelabdin A, Zaman S, Amin G, Nur O, Willander M. Optical and current transport properties of CuO/ZnO nanocoral p–n heterostructure hydrothermally synthesized at low temperature. Applied Physics A. 2012;108(4):921–928. Available from: https://dx.doi.org/10.1007/s00339-012-6995-2
  50. Samokhvalov AA, Viglin NA, Gizhevskii BA, Loshkarev NN, Osipov VV, Solin LI, et al. Low-mobility charge carriers in CuO. Experimantal and Theoretical Physics. 1993;103(3):951–961.
  51. Ekuma CE, Anisimov VI, Moreno J, Jarrell M. Electronic structure and spectra of CuO. The European Physical Journal B. 2014;87(1):23. Available from: https://dx.doi.org/10.1140/epjb/e2013-40949-5
  52. Pukird S, Song W, Noothongkaew S, Kim SK, Min BK, Kim SJ, et al. Synthesis and electrical characterization of vertically-aligned ZnO–CuO hybrid nanowire p–n junctions. Applied Surface Science. 2015;351:546–549. Available from: https://dx.doi.org/10.1016/j.apsusc.2015.05.164
  53. Patel M, Kim HS, Kim J, Yun JH, Kim SJ, Choi EH, et al. Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration. Solar Energy Materials and Solar Cells. 2017;170:246–253. Available from: https://dx.doi.org/10.1016/j.solmat.2017.06.006


© 2020 Agdad, Chaik, Samba Vall, Abounachit, Nkhaili, kissani, Ait Dads, Narjis, Outzourhit. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.