• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 41, Pages: 3605-3616

Original Article

Relationship-Cluster Head Selection and Data Compression Enabled Cluster-Based Aggregation Model for Social Internet of Things

Received Date:24 May 2023, Accepted Date:22 September 2023, Published Date:07 November 2023


Background: The Social Internet of Things (SIoT) combines IoT with social networking, enabling objects to interact based on social relationships and facilitating user-device interactions. However, SIoT networks generate massive data that must be transmitted and processed efficiently. We propose a clusterbased aggregation model for SIoT to address this, integrating relationshipcluster head selection with K-Means and data compression using Huffman coding. Objectives: The proposed model utilizes K-Means to select cluster heads based on object relationships. Objects are clustered using K-Means, and a Decision Tree considers object profiling and relationships to choose the cluster head. Selected cluster heads employ Huffman coding to compress data before transmission to the sink node. Methods: The data are aggregated at the cluster head and it is compressed before sending it to the destination device. Model is evaluated through simulation-based experiments using the SIoTCCN simulator. Findings demonstrate that our proposed model outperforms existing approaches in terms of energy consumption, network lifetime, and data aggregation accuracy. Findings: Evaluation metrics include Silhouette Score, Number Distance between Train and Test K-Means, BIC Score, and Gradient of BIC Scores. Results for our proposed model include a Silhouette score of 0.459 for cluster numbers 2, 3, and 4, -1148.951 distance between train and test K-Means, -5227.080 BIC Score, and -96.445 Gradient of BIC score. For the Relation-Based clustering approach without data compression, the Silhouette score is 0.6266, -203.345 distance between Train and test KMeans, -7266.080 BIC Score, and -61.415 Gradient of BIC Scores. The Data Compression-enabled cluster-based aggregation model without relationshipbased clustering achieves a Silhouette score of 0.58, -467.890 distance between train and test K-Means, -8981.786 BIC Scores, and -94.244 Gradient of BIC Score. Novelty: Integrating relationship-cluster head selection with K-Means and data compression with Huffman coding to develop a cluster-basedaggregation model for SIoT, demonstrating its potential to enhance SIoT performance.

Keywords: Clusterbased model; Cluster head selection; Data aggregation; Data compression; Social Internet of Things


  1. Roopa MS, SP, Buyya R, Venugopal KR, Iyengar SS, Patnaik LM. Social internet of things (siot): Foundations, thrust areas, systematic review and future directions. Computer Communications. 2019;139:32–57. Available from: https://doi.org/10.1016/j.comcom.2019.03.009
  2. Puranikmath VI, Harakannanavar SS, Kumar S, Torse D. Comprehensive Study of Data Aggregation Models, Challenges and Security Issues in Wireless Sensor Networks. International Journal of Computer Network and Information Security. 2019;11(3):30–39. Available from: https://www.mecs-press.org/ijcnis/ijcnis-v11-n3/IJCNIS-V11-N3-5.pdf
  3. Bongale AM, CRN, AMB. Energy efficient intracluster data aggregation technique for wireless sensor network. International Journal of Information Technology. 2022;14(1):827–835. Available from: https://doi.org/10.1007/s41870-020-00419-7
  4. Dehkordi SA, Farajzadeh K, Rezazadeh J, Farahbakhsh R, Sandrasegaran K, Dehkordi MA. A survey on data aggregation techniques in IoT sensor networks. Wireless Networks. 2020;26(2):1243–1263. Available from: https://doi.org/10.1007/s11276-019-02142-z
  5. Jan SRU, Khan R, MAJ. Energy efficient data aggregation approach for cluster-based wireless sensor networks. Annals of Telecommunications. 2021;76:321–329. Available from: https://doi.org/10.1007/s12243-020-00823-x
  6. Kaur M, Munjal A. Data aggregation algorithms for wireless sensor network: A review. Ad Hoc Networks. 2020;100:102083. Available from: https://doi.org/10.1016/j.adhoc.2020.102083
  7. Yao X, Wang J, Shen M, Kong H, Ning H. An improved clustering algorithm and its application in IoT data analysis. Computer Networks. 2019;159:63–72. Available from: https://doi.org/10.1016/j.comnet.2019.04.022
  8. Khan AR, Chishti MA. Data Aggregation Mechanisms in the Internet of Things: A Study, Qualitative and Quantitative Analysis. International Journal of Computing and Digital Systems. 2020;2(9):289–297. Available from: http://dx.doi.org/10.12785/ijcds/090214
  9. Khan AR, Chishti MA. Data Aggregation Mechanism in the Internet of Things: A Study, Qualitative and Quantitative Analysis. International Journal of Computing and Digital Systems . 2020;9(2):289–297. Available from: http://dx.doi.org/10.12785/ijcds/090214
  10. Abhijith HV, Babu HSR. Intelligent Data Aggregation Framework for Resource Constrained Remote Internet of Things Applications. International Journal of Advanced Computer Science and Applications. 2021;12(5):146–151. Available from: https://doi.org/10.14569/IJACSA.2021.0120518
  11. Yousefi S, Karimipour H, Derakhshan F. Data Aggregation Mechanisms on the Internet of Things: A Systematic Literature Review. Internet of Things. 2021;15:100427. Available from: https://doi.org/10.1016/j.iot.2021.100427
  12. Sirajudheen M, Rekh AS. An overview on data aggregation in IOT for wireless sensor network. Turkish Journal of Computer and Mathematics Education. 2021;12(12):3390–3395. Available from: https://turcomat.org/index.php/turkbilmat/article/view/8060/6309
  13. Mohana SD, Prakash SPS, Krinkin K. Service Oriented R-ANN Knowledge Model for Social Internet of Things. Big Data and Cognitive Computing. 2022;6(1):1–23. Available from: https://doi.org/10.3390/bdcc6010032
  14. Mohammadi SO, Kalhor A, Bodaghi H. K-Splits: Improved K Means Clustering Algorithm to Automatically Detect the Number of Clusters. In: Computer Networks, Big Data and IoT , Lecture Notes on Data Engineering and Communications Technologies. Singapore. Springer. 117:197–213.
  15. Gurumoorthy S, Subhash P, Prado RPd, Wozniak M. Optimal Cluster Head Selection in WSN with Convolutional Neural Network-Based Energy Level Prediction. Sensors. 2022;22(24):1–23. Available from: https://doi.org/10.3390/s22249921
  16. Kathiroli P, Selvadurai K. Energy efficient cluster head selection using improved Sparrow Search Algorithm in Wireless Sensor Networks. Journal of King Saud University - Computer and Information Sciences. 2022;34(10, Part A):8564–8575. Available from: https://doi.org/10.1016/j.jksuci.2021.08.031
  17. Mohana SD, Prakash SPS, Krinkin K. CCNSim : An artificial intelligence enabled classification, clustering and navigation simulator for Social Internet of Things. Engineering Applications of Artificial Intelligence. 2023;119:105745. Available from: https://doi.org/10.1016/j.engappai.2022.105745
  18. Badiger VS, Ganashree TS. Energy efficient new data aggregation method for IoT. Journal of Critical Thinking. 2020;7(4):2660–2670. Available from: https://www.jcreview.com/admin/Uploads/Files/61b8506b76d879.18759858.pdf
  19. Farooq O, Singh P, Hedabou M, Boulila W, Benjdira B. Machine Learning Analytic-Based Two-Staged Data Management Framework for Internet of Things. Sensors. 2023;23(5):1–29. Available from: https://doi.org/10.3390/s23052427
  20. Han B, Ran F, Li J, Yan L, Shen H, Li A. A Novel Adaptive Cluster Based Routing Protocol for Energy-Harvesting Wireless Sensor Networks. Sensors. 2022;22(4):1–16. Available from: https://doi.org/10.3390/s22041564


© 2023 Meghana et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.