• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 3, Pages: 146-154

Original Article

Reliability Assessment of Sensory Outcome Measure a New Developed Tool for Children with Cerebral Palsy

Received Date:28 September 2022, Accepted Date:12 December 2022, Published Date:17 January 2023

Abstract

Objective: To investigate the reliability of a recently developed Tool, designed for Hypoxic Cerebral Palsy Children (HCPC) to assess sensory deficits. Method: Internal consistency and all three types of reliability (intra-rater, test-retest, and inter-rater) were investigated. Twenty caregivers of HCPC were addressed. Principal rater took two readings for the intra-rater with a brief break, then another reading for test-retest after a seven-day interval. In the meantime, the observer took the readings for inter-rater reliability testing. The relative and absolute dependability of all three types of responses were evaluated after the recording. Findings : Spearman rank correlation and intraclass correlation values ranged from (0.934 to 1), demonstrating a very strong correlation. While the internal consistency was higher than desired, as indicated by Cronbach’s alpha values, which ranged from (0.966 to 1). Cohen’s kappa coefficient values for inter-rater reliability range from (0.048 to 0.188), and exhibited a small amount of agreement between the two observers. Standard Error of Measurement ranges from (1.026 to 3.810) and indicated credible results. All participant discrepancies on reliability testing were greater than the Minimal Detectable Change, indicating actual differences. Novelty: The uniqueness of this study lies not only in the selection of a recently developed tool for the assessment of sensory issues in HCPC, but also in its extensive analysis of all three types of reliability with both measures along with the assessment of internal consistency . It will be very helpful to researchers who want to create a new instrument or assess the precision of an existing outcome measure. It is the only study that offers a comprehensive analysis of each dependability approach together with the necessary statistical analysis. The Sensory Outcome Measure for Hypoxic Cerebral Palsy children is a reliable tool that has been developed for sensory testing in HCPC.

Keywords: CP (Cerebral Palsy); HCPC (Hypoxic Cerebral Palsy Children); SOMH (Sensory

References

  1. Revelle W, Condon DM. Reliability from α to ω: A tutorial. Psychological Assessment. 2019;31(12):1395–1411. Available from: https://doi.org/10.1037/pas0000754
  2. Schwartz AH, Albin TJ, Gerberich SG. Intra-rater and inter-rater reliability of the rapid entire body assessment (REBA) tool. International Journal of Industrial Ergonomics. 2019;71:111–116. Available from: https://doi.org/10.1016/j.ergon.2019.02.010
  3. Mendoza-Sánchez S, Molina-Rueda F, Florencio LL, Carratalá-Tejada M, Cuesta-Gómez A. Reliability and agreement of the Nine Hole Peg Test in patients with unilateral spastic cerebral palsy. European Journal of Pediatrics. 2022;181(6):2283–2290. Available from: https://doi.org/10.1007/s00431-022-04423-w
  4. Zanudin A, Khong YY, Chong LF, Mohamad NA. Test-Retest Reliability and Construct Validity of Two-Minute Walk Test in Children and Adolescents with Cerebral Palsy. Walailak Journal of Science and Technology (WJST). 2021;18(11). Available from: https://doi.org/10.48048/wjst.2021.9588
  5. Noble S, Scheinost D, Constable RT. A guide to the measurement and interpretation of fMRI test-retest reliability. Current Opinion in Behavioral Sciences. 2021;40:27–32. Available from: https://doi.org/10.1016/j.cobeha.2020.12.012
  6. Peyton C, Pascal A, Boswell L, Deregnier R, Fjørtoft T, Støen R, et al. Inter-observer reliability using the General Movement Assessment is influenced by rater experience. Early Human Development. 2021;161:105436. Available from: https://doi.org/10.1016/j.earlhumdev.2021.105436
  7. Mchugh ML. Interrater reliability: the kappa statistic. Biochemia Medica. 2012;22(3):276–282. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052
  8. Grgic J, Lazinica B, Schoenfeld BJ, Pedisic Z. Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: A Systematic Review. Sports Medicine - Open. 2020;6(1):1–16. Available from: https://doi.org/10.1186/s40798-020-00260-z.
  9. Singh S, Esht V, Agarwal A, Development. Validation and reliability testing of a sensory outcome measure for hypoxia induced cerebral palsy children: A study Protocol. Turkish Online Journal of Qualitative Inquiry. 2021;12(10):4179–4188. Available from: https://www.tojqi.net/index.php/journal/article/view/8425/5990
  10. Klingels K, Cock PD, Molenaers G, Desloovere K, Huenaerts C, Jaspers E, et al. Upper limb motor and sensory impairments in children with hemiplegic cerebral palsy. Can they be measured reliably? Disability and Rehabilitation. 2010;32(5):409–416. Available from: https://doi.org/10.3109/09638280903171469
  11. Shah P, C, C. Reliability of Early Clinical Assessment of Balance Scale in Assessment of Children with Cerebral Palsy. International Journal of Science and Research (IJSR). 2018;9(8):517–520. Available from: https://www.ijsr.net/archive/v9i8/SR20809103014.pdf
  12. Eken MM, Dallmeijer AJ, Buizer AI, Hogervorst S, Hutten KV, Piening M, et al. Intraobserver Reliability and Construct Validity of the Squat Test in Children With Cerebral Palsy. Pediatric Physical Therapy. 2020;32(4):399–403. Available from: https://doi.org/10.1097/PEP.0000000000000736
  13. Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral palsy in children: a clinical overview. Translational Pediatrics. 2020;9(S1):S125–S135. Available from: https://doi.org/10.21037/tp.2020.01.01
  14. Araneda R, Ebner‐karestinos D, Paradis J, Saussez G, Friel KM, Gordon AM, et al. Reliability and responsiveness of the Jebsen‐Taylor Test of Hand Function and the Box and Block Test for children with cerebral palsy. Developmental Medicine & Child Neurology. 2019;61(10):1182–1188. Available from: https://doi.org/10.1111/dmcn.14184
  15. Bruton A, Conway JH, Holgate ST. Reliability: What is it, and how is it measured? Physiotherapy. 2000;86(2):61211–61215. Available from: https://doi.org/10.1016/S0031-9406(05)61211-4
  16. Ursachi G, Horodnic IA, Zait A. How Reliable are Measurement Scales? External Factors with Indirect Influence on Reliability Estimators. Procedia Economics and Finance. 2015;20:123–132. Available from: https://doi.org/10.1016/S2212-5671(15)00123-9
  17. Weir JP. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. The Journal of Strength and Conditioning Research. 2005;19(1):231. Available from: https://doi.org/10.1519/15184.1
  18. Park H. Reliability using Cronbach alpha in sample survey. The Korean Journal of Applied Statistics. 2021;34(1):1–8. Available from: http://dx.doi.org/10.5351/KJAS.2021.34.1.001
  19. Donner A, Eliasziw M. Sample size requirements for reliability studies. Statistics in Medicine. 1987;6(4):441–448. Available from: https://doi.org/10.1002/sim.4780060404
  20. Schober P, Schwarte LA. Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia and Analgesia. 2018;126(5):1763–1771. Available from: https://doi.org/10.1213/ANE.0000000000002864
  21. Chamorro C, Arancibia M, Trigo B, Arias-Poblete L, Jerez-Mayorga D. Absolute Reliability and Concurrent Validity of Hand-Held Dynamometry in Shoulder Rotator Strength Assessment: Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2021;18(17):9293. Available from: https://doi.org/10.3390/ijerph18179293
  22. Castro-Luna G, Jiménez-Rodríguez D. Relative and Absolute Reliability of a Motor Assessment System Using KINECT® Camera. International Journal of Environmental Research and Public Health. 2020;17(16):5807. Available from: https://doi.org/10.3390/ijerph17165807
  23. Doorn JV, Ly A, Marsman M, Wagenmakers EJ. Bayesian rank-based hypothesis testing for the rank sum test, the signed rank test, and Spearman’s ρ. Journal of Applied Statistics. 2020;47(16):2984–3006. Available from: https://doi.org/10.1080/02664763.2019.1709053
  24. Akoglu H. User's guide to correlation coefficients. Turkish Journal of Emergency Medicine. 2018;18(3):91–93. Available from: https://doi.org/10.1016/j.tjem.2018.08.001
  25. Song HY, Park S. An Analysis of Correlation between Personality and Visiting Place using Spearman’s Rank Correlation Coefficient. KSII Transactions on Internet and Information Systems. 2020;14(5):1951–1966. Available from: https://doi.org/10.3837/tiis.2020.05.005
  26. Consiglio C, Mazzetti G, Schaufeli WB. Psychometric Properties of the Italian Version of the Burnout Assessment Tool (BAT) International Journal of Environmental Research and Public Health. 2021;18(18):9469. Available from: https://doi.org/10.3390/ijerph18189469
  27. Fleiss JL, Cohen J. The Equivalence of Weighted Kappa and the Intraclass Correlation Coefficient as Measures of Reliability. Educational and Psychological Measurement. 1973;33(3):613–619. Available from: https://doi.org/10.1177/001316447303300309
  28. Rodrigues IB, Adachi JD, Beattie KA, Macdermid JC. Development and validation of a new tool to measure the facilitators, barriers and preferences to exercise in people with osteoporosis. BMC Musculoskeletal Disorders. 2017;18(1):540. Available from: https://doi.org/10.1186/s12891-017-1914-5
  29. Burke A, Dillon S, O’connor S, Whyte EF, Gore SF, Moran KA. Relative and absolute reliability of shank and sacral running impact accelerations over a short- and long-term time frame. Sports Biomechanics. 2022;14:1–16. Available from: https://doi.org/10.1080/14763141.2022.2086169
  30. Overend T, Anderson C, Sawant A, Perryman B, Locking-Cusolito H. Relative and Absolute Reliability of Physical Function Measures in People with End-Stage Renal Disease. Physiotherapy Canada. 2010;62(2):122–128. Available from: https://doi.org/10.3138/physio.62.2.122
  31. Schlager A, Ahlqvist K, Rasmussen-Barr E, Bjelland EK, Pingel R, Olsson C, et al. Inter- and intra-rater reliability for measurement of range of motion in joints included in three hypermobility assessment methods. BMC Musculoskeletal Disorders. 2018;19(1):1–10. Available from: https://doi.org/10.1186/s12891-018-2290-5
  32. Kovacs FM, Abraira V, Royuela A, Corcoll J, Alegre L, Tomás M, et al. Minimum detectable and minimal clinically important changes for pain in patients with nonspecific neck pain. BMC Musculoskeletal Disorders. 2008;9(1):43. Available from: https://doi.org/10.1186/1471-2474-9-43
  33. Raadt AD, Warrens MJ, Bosker RJ, Kiers H. A Comparison of Reliability Coefficients for Ordinal Rating Scales. Journal of Classification. 2021;38(3):519–562. Available from: https://doi.org/10.1007/s00357-021-09386-5
  34. Deutsch A, Palmer L, Vaughan M, Mcmullen T, Karmarkar A, Kwon S, et al. Inpatient Rehabilitation Facility Change in Self-Care and Change in Mobility Quality Measures: Development and Reliability and Validity Testing. Archives of Physical Medicine and Rehabilitation. 2022;103(6):1105–1112. Available from: https://doi.org/10.1016/j.apmr.2021.12.031

Copyright

© 2023 Singh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.