• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 30, Pages: 2311-2316

Original Article

Review of Selected Orthopaedic Implants for their Genotoxicity Potential

Received Date:18 November 2022, Accepted Date:04 August 2023, Published Date:08 August 2023


Background/Objectives: Orthopaedic implants are intended to be part of a biological system for a considerable amount of time, hence its essential to test for their genotoxicity. This review investigates the genotoxicity associated with various orthopaedic implant materials. Methods: We collected genotoxicity studies conducted on twenty different types of orthopedic implant materials in our laboratory from 2015 to 2022, along with their accompanying reports. Based on these reports, the implants were categorized into groups according to their materials of construction. This paper includes a thorough evaluation of the findings from the genotoxicity tests obtained from the Bacterial Reverse Mutation Assay, Chromosomal Aberration Assay, and Micronucleus Assay conducted on orthopedic implant materials in our laboratory. Findings: A total of 20 different orthopedic implants were tested in our laboratory for their genotoxic potential. These 20 implants were made of four different materials viz., titanium alloys, ultra-high molecular weight polyethylene, stainless steel and Cobalt chromium molybdenum alloys. All these implants were tested on Ames test, chromosome aberration test and or in vivo micronucleus tests. None of the materials showed any evidence of mutagenicity. Novelty: This is the first open paper highlighting the results of genotoxicity testing of selected orthopedic implant materials.

Keywords: Orthopaedic Implants; Genotoxicity; Chromosomal Aberration; Ames; Micronucleus Assay


  1. Phillips DH, Arlt VM. Genotoxicity: damage to DNA and its consequences. Experientia Supplementum. 2009;99:87–110. Available from: https://core.ac.uk/reader/29909583?utm_source=linkout
  2. Turkez H, Arslan ME, Ozdemir O. Genotoxicity testing: progress and prospects for the next decade. Expert Opinion on Drug Metabolism & Toxicology. 2017;13(10):1089–1098. Available from: https://www.tandfonline.com/doi/abs/10.1080/17425255.2017.1375097
  3. Shrivats AR, Alvarez P, Schutte L, Hollinger JO. Bone Regeneration. Princ Tissue Eng Fourth Ed. 2013;p. 1201–1222. Available from: https://doi.org/10.1016/B978-0-12-398358-9.00055-0
  4. Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Engineered Regeneration. 2020;1:6–18. Available from: https://doi.org/10.1016/j.engreg.2020.05.003
  5. Hadjidakis DJ, Androulakis II. Bone Remodeling. Annals of the New York Academy of Sciences. 2006;1092(1):385–396. Available from: https://pubmed.ncbi.nlm.nih.gov/17308163/
  6. AFM, Dimitriou R, Parvizi J, Babis GC. Biology of implant osseointegration. Journal of Musculoskeletal and Neuronal Interactions. 2009;9(2):61–71. Available from: https://www.ismni.org/jmni/pdf/36/01MAVROGENIS.pdf
  7. Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Engineered Regeneration. 2020;1:6–18. Available from: https://doi.org/10.1016/j.engreg.2020.05.003
  8. Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174–3183. Available from: https://pubmed.ncbi.nlm.nih.gov/23391496/
  9. Wang Y, Teng W, Zhang Z, Ma S, Jin Z, Zhou X, et al. Remote Eradication of Bacteria on Orthopedic Implants via Delayed Delivery of Polycaprolactone Stabilized Polyvinylpyrrolidone Iodine. Journal of Functional Biomaterials. 2022;13(4):195. Available from: https://doi.org/10.3390/ jfb13040195
  10. Uhthoff HK, Bardos DI, Liskova-Kiar M. The advantages of titanium alloy over stainless steel plates for the internal fixation of fractures. An experimental study in dogs. The Journal of Bone and Joint Surgery. British volume. 1981;63-B(3):427–484. Available from: https://online.boneandjoint.org.uk/doi/abs/10.1302/0301-620X.63B3.7263759
  11. Cowie RM, Pallem NM, Briscoe A, Jennings LM. Third Body Wear of UHMWPE-on-PEEK-OPTIMA™. Materials. 2020;13(6):1264. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32168765
  12. Filip N, Radu I, Veliceasa B, Filip C, Pertea M, Clim A, et al. Biomaterials in Orthopedic Devices: Current Issues and Future Perspectives. Coatings. 2022;12(10):1544. Available from: https://doi.org/10.3390/ coatings12101544
  13. Rodriguez-Garraus A, Azqueta A, Vettorazzi A, Cerain ALD. Genotoxicity of Silver Nanoparticles. Nanomaterials. 2020;10(2):251. Available from: https://doi.org/10.3390/nano10020251
  14. Figgitt M, Parry M, Maclean A, Blom A, Bannister G, Eastaugh-Waring S, et al. Genotoxicity of orthopaedic wear debris: A patient study. Toxicology. 2011;290(2-3):115. Available from: https://doi.org/10.1016/j.tox.2011.09.026
  15. Qin HM, Herrera D, Liu DF, Chen CQ, Nersesyan A, Mišík M, et al. Genotoxic properties of materials used for endoprostheses: Experimental and human data. Food and Chemical Toxicology. 2020;145:111707. Available from: https://doi.org/10.1016/j.fct.2020.111707


© 2023 George et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.