• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 10, Pages: 881-891

Original Article

Road crack detection using convolutional neural network

Received Date:13 August 2020, Accepted Date:28 February 2021, Published Date:02 April 2021


Objectives: The proposed research work detects road cracks in a given set of images. In addition, it identifies the longitudinal type of crack in given crack image. Methods: The study mainly focuses on implementing a road crack detection technique using Convolutional Neural Networks. Findings: The proposed model is able to distinguish between crack and non-crack images and also able to classify the longitudinal crack from other given crack images. Novelty: Proposed road crack detection technique provides high accuracy compared to earlier standard techniques.

Keywords: Road crack detection; CNN (Convolutional Neural Networks); support vector machines (SVM); deep learning; classification; image processing


  1. Mohan A, Poobal S. Crack detection using image processing: A critical review and analysis. Alexandria Engineering Journal. 2018;57(2):787–798. Available from: https://dx.doi.org/10.1016/j.aej.2017.01.020
  2. Bang S, Park S, Kim H, Kim H. Encoder-decoder network for pixel-level road crack detection in black-box images. Computer-Aided Civil and Infrastructure Engineering. 2019;34(8):713–727. Available from: https://doi.org/10.1111/mice.12440
  3. Gavilán M, Balcones D, Marcos O, Llorca DF, Sotelo MA, Parra I, et al. Adaptive Road Crack Detection System by Pavement Classification. Sensors. 2011;11(10):9628–9657. Available from: https://dx.doi.org/10.3390/s111009628
  4. Rodriguez‐Lozano FJ, León‐García F, Gámez‐Granados JC, Palomares JM, Olivares J. Benefits of ensemble models in road pavement cracking classification. Computer-Aided Civil and Infrastructure Engineering. 2020;35(11):1194–1208. Available from: https://dx.doi.org/10.1111/mice.12543
  5. Li B, Wang KC, Zhang A, Yang E, Wang G. Automatic classification of pavement crack using deep convolutional neural network. International Journal of Pavement Engineering. 2020;21(4):457–463. Available from: https://doi.org/10.1080/10298436.2018.1485917
  6. Sari Y, Prakoso PB, Baskara AR. Application of neural network method for road crack detection. TELKOMNIKA (Telecommunication Computing Electronics and Control). 2020;18(4). Available from: https://dx.doi.org/10.12928/telkomnika.v18i4.14825
  7. Chambon S, Moliard JM. Automatic Road Pavement Assessment with Image Processing: Review and Comparison. International Journal of Geophysics. 2011;2011:1–20. Available from: https://dx.doi.org/10.1155/2011/989354
  8. Sy NT, Avila M, Begot S, Bardet JC. Detection of defects in road surface by a vision system. In: 14th IEEE Mediterranean Electrotechnical Conference. (pp. 847-851) 2008.
  9. Chambon S. Detection of road cracks with multiple images. International Joint Conference on Computer Vision Theory and Applications, VISAPP, France. 2010.
  10. Oliveira H, Correia PL. Automatic Road Crack Detection and Characterization. IEEE Transactions on Intelligent Transportation Systems. 2013;14(1):155–168. Available from: https://dx.doi.org/10.1109/tits.2012.2208630
  11. Zou Q, Cao Y, Li Q, MQ, Cracktree WS. Automatic crack detection from pavement images. Pattern Recognition Letters. 2012;33(3):227–238. Available from: https://doi.org/10.1016/j.patrec.2011.11.004
  12. Premachandra C, Premachandra HWH, Parape CD, Kawanaka H. Road crack detection using color variance distribution and discriminant analysis for approaching smooth vehicle movement on non-smooth roads. International Journal of Machine Learning and Cybernetics. 2015;6(4):545–553. Available from: https://dx.doi.org/10.1007/s13042-014-0240-6
  13. Lins RG, Givigi SN. Automatic Crack Detection and Measurement Based on Image Analysis. IEEE Transactions on Instrumentation and Measurement. 2016;65(3):583–590. Available from: https://dx.doi.org/10.1109/tim.2015.2509278
  14. Amhaz R, Chambon S, Idier J, Baltazart V. Automatic Crack Detection on Two-Dimensional Pavement Images: An Algorithm Based on Minimal Path Selection. IEEE Transactions on Intelligent Transportation Systems. 2016;17(10):2718–2729. Available from: https://dx.doi.org/10.1109/tits.2015.2477675
  15. Akarsu B, Karaköse M, Parlak K, Akin E, Sarimaden A. A Fast and Adaptive Road Defect Detection Approach Using Computer Vision with Real Time Implementation. International Journal of Applied Mathematics, Electronics and Computers. 2016;p. 290. Available from: https://dx.doi.org/10.18100/ijamec.270546
  16. Gopalakrishnan K, Khaitan SK, Choudhary A, Agrawal A. Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Construction and Building Materials. 2017;157:322–330. Available from: https://dx.doi.org/10.1016/j.conbuildmat.2017.09.110
  17. Geethalakshmi SN. A survey on crack detection using image processing techniques and deep learning algorithms. International Journal of Pure and Applied Mathematics. 2018;118(8):215–220. Available from: https://acadpubl.eu/jsi/2018-118-7-9/articles/8/29.pdf
  18. Kim H, Ahn E, Shin M, Sim SH. Crack and noncrack classification from concrete surface images using machine learning. Structural Health Monitoring. 2019;18(3). Available from: https://doi.org/10.1177/1475921718768747
  19. Wu S, Fang J, Zheng X, Li X. Sample and Structure-Guided Network for Road Crack Detection. IEEE Access. 2019;7:130032–130043. Available from: https://doi.org/10.1109/ACCESS.2019.2940767
  20. Fan R, Bocus MJ, Zhu Y, Jiao J, Wang L, Ma F, et al. Road crack detection using deep convolutional neural network and adaptive thresholding. In: 2019 IEEE Intelligent Vehicles Symposium (IV). (pp. 474-479) 2019.
  21. Song W, Jia G, Jia D, Zhu H. Automatic Pavement Crack Detection and Classification Using Multiscale Feature Attention Network. IEEE Access. 2019;7:171001–171012. Available from: https://dx.doi.org/10.1109/access.2019.2956191
  22. Dib J, Sirlantzis K, Howells G. A Review on Negative Road Anomaly Detection Methods. IEEE Access. 2020;8:57298–57316. Available from: https://dx.doi.org/10.1109/access.2020.2982220


© 2021 Bhat et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.