• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 45, Pages: 3318-3334

Original Article

Robust Convolutional Neural Network Model For Recognition of Fruits

Received Date:07 August 2021, Accepted Date:16 December 2021, Published Date:22 December 2021


Objectives: To develop a model for the automatic recognition of fruits utilizing deep learning techniques. Methods: We have designed a fruit classification and recognition Model using Convolutional Neural Networks (CNN). We have used excellent quality ImageNet dataset of fruit images for evaluation purpose. It contains 9,130 images of 11 different categories. The classification is challenging as the images comprise different fruits of the same color and shape, overlapped fruits, the background is not homogenous, and with different light effects etc. Findings: We have achieved a validation accuracy of 91.28 % and the testing accuracy of 100%. The same model is trained on the fruits-360 dataset with 92 categories of fruits with 47,526 images. The Model gives validation accuracy of 100% and testing accuracy of 100%. This study also compares the results obtained using transfer learning by training the EfficientNet-b0 architecture with the ImageNet and fruits-360 dataset. The validation accuracy is 96.77% and the testing accuracy is 100%. Again, the validation accuracy and testing accuracy for fruits-360 dataset is 100% and 99.9% respectively. Applications: Recognition of fruit is required in agricultural problems like robot harvesting and fruit counting and many more applications. Moreover, it can be used in the retail business, as a self-service system to recognize the fruits. It can be used in human-robot interactions. Novelty: The model once trained can achieve state-of-art accuracy for the recognition of any type of fruit with any background. It sometimes exceeds human-level performance. Hence, the Model is Robust enough to recognize the fruits.

Keywords: Deep learning; Convolutional Neural Networks; Fruit recognition; ImageNet; Transfer learning; Machine learning; fruits-360 dataset; EfficientNet-b0 model


  1. Ashraf S, Kadery I, Chowdhury MAA, Mahbub TZ, Rahman RM. Fruit Image Classification Using Convolutional Neural Networks. International Journal of Software Innovation. 2019;7(4):51–70. doi: 10.4018/ijsi.2019100103
  2. Khan Rafflesi D, Rameswar. Multi class fruit classification using efficient object detection and recognition techniques. Graphics and Signal Processing. 2019;11:1. doi: 10.5815/ijigsp.2019.08.01
  3. Asia K, Mohsin S, Jinhyuck P. Pure-CNN: A framework for fruit images classification. International Conference on Computational Science and Computational Intelligence. 2018;p. 404–408. doi: 10.1109/CSCI46756.2018.00082
  4. Habib MT, Majumder A, Jakaria AZM, Akter M, Uddin MS, Ahmed F. Machine vision based papaya disease recognition. Journal of King Saud University - Computer and Information Sciences. 2018;32(3):300–309. doi: 10.1016/j.jksuci.2018.06.006
  5. Zhang YD, Dong Z, Chen X, Jia W, Du S, Muhammad K, et al. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools and Applications. 2017;78(3):3613–3632. doi: 10.1007/s11042-017-5243-3
  6. Rodriguez M, Pastor F, Ugarte W. 28th Conference of Open Innovations Association (FRUCT) Classification of Fruit Ripeness Grades using a Convolutional Neural Network and Data Augmentation. (pp. 374-380) 2021. 10.23919/FRUCT50888.2021.9347597
  7. Abdulkader H, Ma’aitah S, MK, Rahib A, Uzelaltinbulat H, Sonyel S, et al. Deep Learning Based on Residual Networks for Automatic Sorting of Bananas. Journal of Food Quality. 2021. doi: 10.1155/2021/5516368
  8. A MU, Aina S, Okegbile O, A RL, Oluwaranti A. Recognition of West African Indigenous Fruits using a Convolutional Neural Network Model. 41:10–14. Available from: https://ijcjournal.org/index.php/InternationalJournalOfComputer/article/view/1885
  9. Wang H, Zhang F, Wang L. Fruit classification model based on improved Darknet53 convolutional neural network. In2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). 2020;p. 881–884.
  10. Zhang YD, Dong Z, Chen X, Jia W, Du S, Muhammad K, et al. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools and Applications. 2017;78(3):3613–3632. doi: 10.1007/s11042-017-5243-3
  11. Wu L, Zhang H, Chen R, Yi J. Fruit Classification using Convolutional Neural Network via Adjust Parameter and Data Enhancement. In2020 12th International Conference on Advanced Computational Intelligence (ICACI). 2020;p. 294–301.
  12. Linh TD, Phuong N, Claudio TD, Davide D. Automated fruit recognition using EfficientNet and MixNet. Computers and Electronics in Agriculture. 2020;171:105326. doi: 10.1016/j.compag.2020.105326
  13. Dang Thi C, Tai V, D. A fruits recognition system based on a modern deep learning technique. Journal of physics: conference series. 2019;1327:12050. doi: 10.1088/1742-6596/1327/1/012050
  14. Lu S, Lu Z, Aok S, Graham L. Fruit Classification Based on Six Layer Convolutional Neural Network. 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). 2018;p. 1–5. doi: 10.1109/icdsp.2018.8631562
  15. Horea M, Mihai O. Fruit recognition from images using deep learning. Acta Univ. Sapientiae, Informatica. 2018;10(1):1–38. Available from: https://arxiv.org/abs/1712.00580v10


© 2021 Bongulwar & Talbar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.