• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 16, Pages: 1250-1260

Original Article

Robust Optimization of electroencephalograph (EEG) Signals for Epilepsy Seizure Prediction by utilizing VSPO Genetic Algorithms with SVM and Machine Learning Methods

Received Date:11 April 2021, Accepted Date:18 April 2021, Published Date:06 May 2021


Objectives: To optimize the EEG signals in order to predict the epileptic seizures at early stage and to improve the accuracy level by employing genetic algorithm and machine learning methods. Methods: Virus Swarm Particle Optimization Technique (VSPO) based Genetic algorithm is utilized for the purpose of feature selection and Machine Learning SVM technique is utilized for classification of EEG signals to determine seizure or non-seizure. The Discrete Wavelet Transform (DWT) is utilized for factor extraction to assess the recurrence range of EEG signals associated with seizures, to partition them into separate spaces using DWT of EEG symbols, and to consider the variations between seizure and normal functionality. VPSO-GA with SVM extracts the features from the Andrzejak R G dataset and then selects the relevant function to perform classification and prediction in order to optimize the EEG signals for early ES prediction and to improve the accuracy level. To demonstrate the effectiveness of the proposed algorithm, MATLAB is used for implementation. The performance results are compared to the existing baseline versions FCM-MPSO, EDMLC and K-MODE. Findings: EEG signals are optimized and early ES prediction is done with 98.13% accuracy level, 98.03% sensitivity, 98.01% specificity, 98.90% Precision, 97.96% Recall, 191 True Positive, 104 True Negative and 98.46% F-Score to predict the seizure in an optimized manner which is high compared to the existing versions. Novelty: According to the findings of the comprehensive study, the proposed algorithm VPSO-SVM outperforms FCM-MPSO, EDMLC and K-MODE in terms of accuracy level of epileptic seizure prediction at early stage by optimizing the EEG signals in a robust manner.

Keywords: Epilepsy Seizure; Genetic Algorithm; Machine Learning Algorithm; Classification; SVM; DWT


  1. Usman SM, Usman M, Fong S. Epileptic Seizures Prediction Using Machine Learning Methods. Computational and Mathematical Methods in Medicine. 2017;2017:1–10. Available from: https://dx.doi.org/10.1155/2017/9074759
  2. Priya CVB, Deviaruna D. A Hybrid Detection Model for Epilepsy Seizure using FCM with MPSO and Decision Tree. International Journal of Recent Technology and Engineering. 2020;8(6):2670–2674. Available from: https:// dx.doi.org/10.35940/ijrte.F8097.038620
  3. Baldominos A, Ramon-Lozano C. Optimizing EEG Energy-based Seizure Detection using Genetic Algorithms. IEEE Congress on Evolutionary Computation. 2017;1(2):2338–2345. Available from: https://doi.org/10.1109/CEC.2017.7969588
  4. Zhao X, Zhang R, Mei Z, Chen C, Chen W. Identification of Epileptic Seizures by Characterizing Instantaneous Energy Behavior of EEG. IEEE Access. 2019;7(2):70059–70076. Available from: https://dx.doi.org/10.1109/access.2019.2919158
  5. Mardini W, Yassein MMB, Al-Rawashdeh R, Aljawarneh S, Khamayseh Y, Meqdadi O. Enhanced Detection of Epileptic Seizure Using EEG Signals in Combination With Machine Learning Classifiers. IEEE Access. 2020;8:24046–24055. Available from: https://dx.doi.org/10.1109/access.2020.2970012
  6. Kavya BS, Prasad SN. Analogy of Algorithms for Automatic Epileptic Seizure Detection. International Conference on Recent Trends on Electronics. 2020;p. 63–68. Available from: https://doi.org/10.1109/RTEICT49044.2020.9315627
  7. Usman SM, Khalid S, Aslam MH. Epileptic Seizures Prediction Using Deep Learning Techniques. IEEE Access. 2020;8:39998–40007. Available from: https://dx.doi.org/10.1109/access.2020.2976866
  8. Alturki FA, AlSharabi K, Abdurraqeeb AM, Aljalal M. EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques. Sensors. 2020;20(9):1–17. Available from: https://dx.doi.org/10.3390/s20092505
  9. Truong ND, Nguyen AD, Kuhlmann L, Bonyadi MR, Yang J, Ippolito S. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Networks. 2018;105:104–111. Available from: https://dx.doi.org/10.1016/j.neunet.2018.04.018
  10. Rasheed K, Qayyum A, Qadir J, Sivathamboo S, Kwan P, Kuhlmann L, et al. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. IEEE Reviews in Biomedical Engineering. 2021;14:139–155. Available from: https://dx.doi.org/10.1109/rbme.2020.3008792
  11. Indiradevi KP, Elias E, Sathidevi PS, Nayak SD, Radhakrishnan K. A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram. Computers in Biology and Medicine. 2008;38(7):805–816. Available from: https://dx.doi.org/10.1016/j.compbiomed.2008.04.010
  12. Chandaka S, Chatterjee A, Munshi S. Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Systems with Applications. 2009;36(2):1329–1336. Available from: https://dx.doi.org/10.1016/j.eswa.2007.11.017
  13. Alkan A, Koklukaya E, Subasi A. Automatic seizure detection in EEG using logistic regression and artificial neural network. Journal of Neuroscience Methods. 2005;148(2):167–176. Available from: https://dx.doi.org/10.1016/j.jneumeth.2005.04.009
  14. Hively LM, Protopopescu VA. Channel-consistent forewarning of epileptic events from scalp EEG. IEEE Transactions on Biomedical Engineering. 2003;50(5):584–593. Available from: https://dx.doi.org/10.1109/tbme.2003.810693
  15. Dissanayake T, Fernando T, Denman S, Sridharan S, Fookes C. Deep Learning for Patient-Independent Epileptic Seizure Prediction Using Scalp EEG Signals. IEEE Sensors Journal. 2021;21(7):9377–9388. Available from: https://dx.doi.org/10.1109/jsen.2021.3057076
  16. Zhang Z, Parhi KK. Low-Complexity Seizure Prediction From iEEG/sEEG Using Spectral Power and Ratios of Spectral Power. IEEE Transactions on Biomedical Circuits and Systems. 2016;10(3):693–706. Available from: https://dx.doi.org/10.1109/tbcas.2015.2477264
  17. Ghasemi N, Mosavi MR. Seizure prediction using EEG segmentation change points. Intelligent Systems and Signal Processing. 1(2):17–22. Available from: https://doi.org/10.1109/ICSPIS.2017.8311582
  18. Alotaiby TN, Alshebeili SA, Alshawi T, Ahmad I, El-Samie FEA. EEG seizure detection and prediction algorithms: a survey. EURASIP Journal on Advances in Signal Processing. 2014;2014(1):183–203. Available from: https://dx.doi.org/10.1186/1687-6180-2014-183
  19. Azami H, Mohammadi K, Hassanpour H. An Improved Signal Segmentation Method using Genetic Algorithm. International Journal of Computer Applications. 2011;29(8):5–9. Available from: https://dx.doi.org/10.5120/3586-4967
  20. Tuncer T, Dogan S, Naik GR, Pławiak P. Epilepsy attacks recognition based on 1D octal pattern, wavelet transform and EEG signals. Multimedia Tools and Applications. 2021;p. 1–23. Available from: https://dx.doi.org/10.1007/s11042-021-10882-4
  21. Andrzejak RG, Lehnertz K, Rieke C, Mormann F, David P, Elger CE. Indications of Nonlinear Deterministic and Finite Structures in Time Series of Brain Electrical Activity: Dependence on recording region and brain state. Physical Review E. 64(6):061907. Available from: https://doi.org/10.1103/PhysRevE.64.061907


© 2021 Banupriya C V & Devi Aruna D.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.