• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 28, Pages: 2126-2132

Original Article

Sentiment Analysis and Customer Satisfaction Factors Based on LSTM and Topic Modeling

Received Date:12 May 2023, Accepted Date:19 June 2023, Published Date:22 July 2023


Objective: To predict sentiment of the Airbnb text reviews using Long Short Term Memory (LSTM). To improve the accuracy and performance metrics. To identify customer satisfaction and dissatisfaction factors of the Airbnb customers using Sentiment Analysis and Topic Modeling. Method: The study is divided into two parts after performing necessary pre-processing steps. First part focuses on sentiment analysis using LSTM. Dataset is created by combining review data of 3 cities, then, operations like pre-processing, sentiment analysis, label column creation, under sampling etc. were conducted. After this, data was trained on the configured LSTM Model. The second part of the study was Topic Modeling after applying Sentiment Analysis, on an Airbnb dataset, to derive and understand customer satisfaction and dissatisfaction factors.Findings: Sentiment Analysis using LSTM showed training accuracy of 96.37%.and testing accuracy of 93.89%. The performance metrics showed promising results. The topics found for negative and positive sentiment portraying the customer satisfaction and dissatisfaction factors after Topic Modeling align with the existing literature findings and are important to generalize the existing literature as well. Novelty: Improved performance metrics like Accuracy, F1- score and Recall for sentiment analysis using LSTM. Results stating customer satisfaction and dissatisfaction factors add value to the existing literature and help to generalize findings.

Keywords: Natural Language Processing; Sentiment Analysis; Topic Modeling; Deep Learning; LSTM; Customer Satisfaction


  1. Raza MR, Hussain W, Varol A. Performance Analysis of Deep Approaches on Airbnb Sentiment Reviews. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). 2022. Available from: https://doi.org/10.1109/ISDFS55398.2022.9800816
  2. Alsurayyi WI, Alghamdi NS, Abraham A. Deep Learning with Word Embedding Modeling for a Sentiment Analysis of Online Reviews. International Journal of Computer Information Systems and Industrial Management Applications. 2019;11:227–241. Available from: http://www.mirlabs.org/ijcisim/regular_papers_2019/IJCISIM_22.pdf
  3. Dang NC, Moreno-García MN, Prieta FDL. Sentiment Analysis Based on Deep Learning: A Comparative Study. Electronics. 2020;9(3):483. Available from: https://doi.org/10.3390/electronics9030483
  4. Sutherland I, Kiatkawsin K. Determinants of Guest Experience in Airbnb: A Topic Modeling Approach Using LDA. Sustainability. 2020;12(8):3402. Available from: https://doi.org/10.3390/su12083402
  5. Lima JIMP, Pessanha GRG, Araujo MVP, Alves RC, De A, Ces MFP, et al. Place branding Pernambuco: analysis of the feelings of the users through Instagram hashtags”. Brazilian Journal of Marketing. 2022;21(1):154–184. Available from: https://doi.org/10.5585/remark.v21i1.20578
  6. Chiny M, Bencharef O, Hadi MY, Chihab Y. A Client-Centric Evaluation System to Evaluate Guest’s Satisfaction on Airbnb Using Machine Learning and NLP. Applied Computational Intelligence and Soft Computing. 2021;2021:1–14. Available from: https://doi.org/10.1155/2021/6675790
  7. Chiny M, Bencharef O, Chihab Y. Towards a Machine Learning and Datamining approach to identify customer satisfaction factors on Airbnb. 2021 7th International Conference on Optimization and Applications (ICOA). 2021;p. 1–5. Available from: https://doi.org/10.1109/ICOA51614.2021.9442657
  8. Keawtoomla N, Pongwat A, Bootkrajang J. Using Latent Dirichlet Allocation to investigate guest experience in Airbnb accommodation during COVID-19 pandemic in the United Kingdom. 2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE). 2022;p. 1–6. Available from: https://doi.org/10.1109/JCSSE54890.2022.9836314
  9. Piris Y, Gay AC. Customer satisfaction and natural language processing. Journal of Business Research. 2021;124:264–271. Available from: https://doi.org/10.1016/j.jbusres.2020.11.065
  10. Li Z, Chen H, Huang X. Airbnb or Hotel?: A Comparative Study on the Sentiment of Airbnb Guests in Sydney - Text Analysis Based on Big Data. International Journal of Tourism and Hospitality Management in the Digital Age (IJTHMDA). 2020;4(2):1–10. Available from: https://doi.org/10.4018/IJTHMDA.2020070101
  11. Santos AIGP, Perinotto ARC, Soares JRR, Mondo TS, Cembranel P. Expressing the Experience: An Analysis of Airbnb Customer Sentiments. Tourism and Hospitality. 2022;3(3):685–705. Available from: https://doi.org/10.3390/tourhosp3030042
  12. Vassilikopoulou A, Kamenidou I, Priporas CV. Negative Airbnb reviews: an aspect-based sentiment analysis approach. EuroMed Journal of Business. 2022. Available from: https://doi.org/10.1108/EMJB-03-2022-0052
  13. Madhi HAB, Alhammah MM. What Drives Airbnb Customers’ Satisfaction in Amsterdam? A Sentiment Analysis. International Journal of Advanced Computer Science and Applications. 2021;12(6). Available from: https://doi.org/10.14569/IJACSA.2021.0120628
  14. Zhang G, Cui R, Cheng M, Zhang Q, Li Z. A comparison of key attributes between peer-to-peer accommodations and hotels using online reviews. Current Issues in Tourism. 2020;23(5):530–537. Available from: https://doi.org/10.1080/13683500.2019.1575339
  15. Marine-Roig E. Analytics in hospitality and tourism: Online travel reviews. Advances in Hospitality and Tourism Information Technology. 2021;p. 1–27. Available from: https://www.researchgate.net/publication/358817124_Analytics_in_hospitality_and_tourism_Online_travel_reviews
  16. Joseph G, Varghese V. Analyzing Airbnb Customer Experience Feedback Using Text Mining. In: S, M, R, R, T, M., eds. Big Data and Innovation in Tourism, Travel, and Hospitality. (pp. 147-162) Springer Singapore. 2019.
  17. Hutto C, Gilbert E. VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Proceedings of the International AAAI Conference on Web and Social Media. 2014;8(1):216–225. Available from: https://doi.org/10.1609/icwsm.v8i1.14550
  18. Hamad RA, Kimura M, Lundström J. Efficacy of Imbalanced Data Handling Methods on Deep Learning for Smart Homes Environments. SN Computer Science. 2020;1(4):204. Available from: https://doi.org/10.1007/s42979-020-00211-1
  19. Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. Journal of machine Learning research. 2003;3:993–1022. Available from: https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
  20. Daniel S, Saidat A, Sanni L, Rhue. A Power-threat View of The Role of Neighborhood Demographics on Airbnb Review Sentiments. AMCIS 2022 Proceedings. 2022. Available from: https://aisel.aisnet.org/amcis2022/sig_si/sig_si/1


© 2023 Nazirkar & Kulkarni. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.