• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 44, Pages: 2403-2412

Original Article

Serological and Molecular Detection of Toxoplasma Gondii among Pregnant Women Giving Birth at the University Of Gondar Specialized Hospital in Gondar Town, Northwest Ethiopia

Received Date:06 September 2022, Accepted Date:04 October 2022, Published Date:01 December 2022


Objective: Congenital toxoplasmosis can be presented when immunosuppressed women are reactivating of this infection acquired before pregnancy in addition to women recently exposed to this disease during pregnancy, which causes of fetal death, neonatal death or congenital defects. Women mainly get this infection by ingested improperly cooked or raw meat consisting of viable tissue cysts or by contaminated foods and water within sporulated oocysts or through the placenta. Thus, this study aimed to detect Toxoplasma gondii in pregnant women using serologically and molecularly at study area. Methods: A cross-sectional study was conducted from September 2019 to October 2020 by collecting a total of 200 umbilical cord blood and matching discharged placental tissue samples from systematic randomly selected pregnant women giving birth at University of Gondar specialized hospital. Latex agglutination test and nested polymerase chain reaction were used for the detections of this infection. Findings: The overall serological, first polymerase chain reaction and nested polymerase chain reaction findings of this study were 46%, 24% and 10%, respectively. The univariant analysis indicated that seropositivity of Toxoplasma gondii antibodies were also significantly influenced by eating raw meat, eating raw vegetables, drinking raw milk, presence of domestic cat contacts and source of water (P  0.05). In the case of multivariate analysis drinking raw milk and source of water were also significantly associated to the seropositivity of Toxoplasma gondii. Moreover, there were also fair concordant between latex agglutination within first polymerase reaction (Kappa: 0.290) andnested polymerase chain reaction tests of this parasite (Kappa: 0.231). Novelty: This nested polymerase chain reaction and the Toxo-latex agglutination tests had also fair agreements in pregnant women. Moreover, Consumption of raw meat, vegetables and milk; domestic cat contacts and source of water were the potential statically significant associated risk factors for Toxoplasma gondii seropositivity. Conclusions: Generally, these comparative tests confirmed the existence of this infection in pregnant women that played up a pool of public health risks for their embryo and infants. Thus, thoroughly cooking raw meats and vegetables; pasteurized raw milk; avoid domestic cat contacts and boiling of water will be the best prevention and control strategies of this infection. Further works on its genotyping of this pathogen will be also convinced. Keywords: Latex agglutination; Nested polymerase chain reaction; Placental tissue; Pregnant women; Toxoplasma gondii; Umbilical cord blood


  1. Dubey JP. CRC press. 2016.
  2. Guo M, Mishra A, Buchanan RL, Dubey JP, Hill DE, Gamble HR, et al. A Systematic Meta-Analysis of<i>Toxoplasma gondii</i>Prevalence in Food Animals in the United States. Foodborne Pathogens and Disease. 2016;13(3):109–118. Available from: https://doi:10.1089/fpd.2015.2070
  3. Robert-Gangneux F, Dardé ML. Epidemiology of and Diagnostic Strategies for Toxoplasmosis. Clinical Microbiology Reviews. 2012;25(2):264–296. Available from: https://doi:10.1128/CMR.05013-11
  4. Loeuillet C, Bañuls AL, Hide M. Study of Leishmania pathogenesis in mice: experimental considerations. Parasites & Vectors. 2016;9:1–12. Available from: https://doi.org/10.1186/s13071-016-1413-9
  5. Liu L, Oza S, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. The lancet. 2015;385:430–440. Available from: https://doi.org/10.1016/S0140-6736(14
  6. Shwab EK, Zhu XQ, Majumdar D, Pena HFJ, Gennari SM, Dubey JP, et al. Geographical patterns of <i>Toxoplasma gondii</i> genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology. 2014;141(4):453–461. Available from: https://doi: 10.1017/S0031182013001844
  7. Reusken CBEM, Messadi L, Feyisa A, Ularamu H, Godeke GJ, Danmarwa A, et al. Geographic Distribution of MERS Coronavirus among Dromedary Camels, Africa. Emerging Infectious Diseases. 2014;20(8):1370–1374. Available from: https://doi: 10.3201/eid2008.140590
  8. Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, et al. World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis. PLOS Medicine. 2015;12(12):e1001920. Available from: https://doi.org/10.1371/journal.pmed.1001920
  9. Jones JL, Dubey J. Clinical infectious diseases. 2012;55(6):845–851. Available from: https://doi.org/10.1093/cid/cis508
  10. Berihun ML, Tsunekawa A, Haregeweyn N, Meshesha DT, Adgo E, Tsubo M, et al. Exploring land use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy. 2019;87. Available from: https://doi.org/10.1016/j.landusepol.2019.104052
  11. Weldesamuel E, Gebreyesus H, Beyene B, Teweldemedhin M, Welegebriel Z, Tetemke D. Assessment of needle stick and sharp injuries among health care workers in central zone of Tigray, northern Ethiopia. BMC Research Notes. 2019;12(1):1–6. Available from: https://doi.org/10.1186/s13104-019-4683-4
  12. Thrusfield M, Veterinary Epidemiology. Blackwell Sci. Ltd. Wiley. 2005. Available from: https://books.google.com/books?hl=en&lr=&id=3e5LDwAAQBAJ&oi=fnd&pg=PR18&dq=Thrusfield
  13. Mengistu D, Bewket W, Lal R. Recent spatiotemporal temperature and rainfall variability and trends over the Upper Blue Nile River Basin, Ethiopia. International Journal of Climatology. 2014;34(7):2278–2292. Available from: https://doi.org/10.1002/joc.3837
  14. Kalambhe D, Gill JPS, Singh BB. Molecular detection of Toxoplasma gondii in the slaughter sheep and goats from North India. Veterinary Parasitology. 2017;241:35–38. Available from: https://doi: 10.1016/j.vetpar.2017.05.009
  15. Liu PY, Chin LK, Ser W, Chen HF, Hsieh CM, Lee CH, et al. Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab on a Chip. 2016;16:634–644. Available from: https://doi.org/10.1039/C5LC01445J
  16. Moss TJ, Qi Y, Xi L, Peng B, Kim TB, Ezzedine NE, et al. Comprehensive Genomic Characterization of Upper Tract Urothelial Carcinoma. European Urology. 2017;72(4):641–649. Available from: https://doi: 10.1016/j.eururo.2017.05.048
  17. Gashout A, Amro A, Erhuma M, Al-Dwibe H, Elmaihub E, Babba H, et al. Molecular diagnosis of Toxoplasma gondii infection in Libya. BMC Infectious Diseases. 2016;16:157. Available from: https://doi.org/10.1186/s12879-016-1491-5
  18. Sandoval-Carrillo AA, Vértiz-Hernández AA, Salas-Pacheco JM, González-Lugo OE, Antuna-Salcido EI, Salas-Pacheco SM, et al. Toxoplasma gondii infection in pregnant women: a cross-sectional study in Matehuala City, Mexico. BMJ Open. 2020;10(8):e033995. Available from: https://doi: 10.1136/bmjopen-2019-033995
  19. Ghamdi MA, Alghamdi KM, Ghandoora Y, Alzahrani A, Salah F, Alsulami A, et al. Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC Infectious Diseases. 2016;16:174. Available from: https://doi: 10.1186/s12879-016-1492-4
  20. Achaw B, Tesfa H, Zeleke AJ, Worku L, Addisu A, Yigzaw N, et al. Sero-prevalence of Toxoplasma gondii and associated risk factors among psychiatric outpatients attending University of Gondar Hospital, Northwest Ethiopia. BMC Infectious Diseases. 2019;19:581. Available from: https://doi.org/10.1186/s12879-019-4234-6
  21. Bica-Pop C, Cojocneanu-Petric R, Magdo L, Raduly L, Gulei D, Berindan-Neagoe I. Overview upon miR-21 in lung cancer: focus on NSCLC. Cellular and Molecular Life Sciences. 2018;75(19):3539–3551. Available from: https://doi: 10.1007/s00018-018-2877-x
  22. Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. International journal for parasitology. 2000;30(12):124–131. Available from: https://doi: 10.1016/s0020-7519(00)00124-7.
  23. Liang AD, Serrano-Plana J, Peterson RL, Ward TR. Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Accounts of Chemical Research. 2019;52(3):585–595. Available from: https://doi.org/10.1021/acs.accounts.8b00618
  24. Botein EF, Darwish A, El‐tantawy NL, El‐baz R, Eid MI, Shaltot AM. Serological and molecular screening of umbilical cord blood for<i>Toxoplasma gondii</i>infection. Transplant Infectious Disease. 2019;21(4):13117. Available from: https://doi: 10.1111/tid.13117
  25. Al-Sray AH, Sarhan SR, Mohammed HA. Molecular and Serological Characterization of Toxoplasma gondii in Women in Wasit Province. Advances in Animal and Veterinary Sciences. 2019;7(8):657–663. Available from: http://dx.doi.org/10.17582/journal.aavs/2019/7.8.657.663


© 2022 Yirsa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.