• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 21, Pages: 2168-2174

Original Article

Significance of alkaline treatment on the composition of mango seed shell fiber for polymer composite application

Received Date:05 April 2020, Accepted Date:19 May 2020, Published Date:23 June 2020

Abstract

Background/Objectives: The minimization of unnecessary components from agro-waste is essential for performance and conversion into useful products in domestic and industrial utilization. The need for removal of these unwanted components is important to boost the strength of the agro-waste for its effectiveness as additive in agro-based polymer composite production as new engineering material for structural purpose. This investigation entailed the influence of NaOH concentration and soaking time on the key compositional content of novel mango seed shell fiber (MSSF). Methods/findings: The MSSF was treated with NaOH solution at 2.5, 5, 7.5 wt % concentration and soaking time of 2-6 hr. The compositions of MSSF were obtained for the treated and untreated sample by gravimetric method. The pure and NaOH treated MSSF were analyzed instrumentally employing Fourier transform infrared (FTIR) spectrometer to show the functionality of some substances present. From this result, the optimum composition of MSSF was observed at 5 % NaOH concentration and 4 hr soaking time. The maximum composition at this condition improved than the crude MSSF by 71.33% cellulose content, while the hemicelluloses and lignin content removal was lower than the raw fiber by 91.75 and 98.84%, respectively. Application: The results at this optimum treatment of MSSF composition can be recommended for agro-based polymer composite in indoor application.
Keywords: Mango seed shell fiber; composition; NaOH; agro-wastes; alkaline treatment 

References

  1. Mike GR, Dominic OO, Amechi AK. Chemically Treated Avocado Wood Flour -LLDPE Composite. Usak University Journal of Material Sciences. 2017;6(1-2):27–40. Available from: https://dx.doi.org/10.12748/uujms.2018.44
  2. Dungani R, Karina M, . S, Sulaeman A, Hermawan D, Hadiyane A. Agricultural Waste Fibers Towards Sustainability and Advanced Utilization: A Review. Asian Journal of Plant Sciences. 2016;15(1):42–55. Available from: https://dx.doi.org/10.3923/ajps.2016.42.55
  3. Harun S, Geok SK. Effect of Sodium Hydroxide Pretreatment on Rice Straw Composition. Indian Journal of Science and Technology. 2016;9(21):42–55. Available from: https://dx.doi.org/10.17485/ijst/2016/v9i21/95245
  4. Johnson FX, Linke-Heep C, Dam JEGv, Annadana S. Stockholm Environment Institute Industrial Biotechnology and Biomass Utilisation: Prospects and Challenges for the Developing World. In: Expert Group Meeting that was held at UNIDO HQ. Vienna, Austria. p. 1–186.
  5. Harun S, Balan V, Takriff MS, Hassan O, Jahim J, Dale BE. Performance of AFEX™ pretreated rice straw as source of fermentable sugars: the influence of particle size. Biotechnology for Biofuels. 2013;6(1):40. Available from: https://dx.doi.org/10.1186/1754-6834-6-40
  6. Joshi SV, Drzal LT, Mohanty AK, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing. 2004;35(3):371–376. Available from: https://dx.doi.org/10.1016/j.compositesa.2003.09.016
  7. Kalia S, Kaith BS, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science. 2009;49(7):1253–1272. Available from: https://dx.doi.org/10.1002/pen.21328
  8. Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, et al. Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science. 2011;2011:1–35. Available from: https://dx.doi.org/10.1155/2011/837875
  9. Hakeem KR, Jawaid M, Rashid U. Abaca fiber: A renewablebio-resource for industrial uses and other applications. Biomass and bioenergy: Applications. 2015. Available from: https://doi.org/10.1007/978-3-319-07578-5
  10. Pickering KL, Beckermann GW, Alam SN, Foreman NJ. Optimising industrial hemp fibre for composites. Composites Part A: Applied Science and Manufacturing. 2007;38(2):461–468. Available from: https://dx.doi.org/10.1016/j.compositesa.2006.02.020
  11. Li X, Tabil LG, Panigrahi S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment. 2007;15(1):25–33. Available from: https://dx.doi.org/10.1007/s10924-006-0042-3
  12. Saheb DN, Jog JP. Natural fiber polymer composites: A review. Advances in Polymer Technology. 1999;18(4):351–363. Available from: https://dx.doi.org/10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x
  13. Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology. 2005;23(1):22–27. Available from: https://dx.doi.org/10.1016/j.tibtech.2004.11.002
  14. Reddy N, Yang Y. Properties of High-Quality Long Natural Cellulose Fibers from Rice Straw. Journal of Agricultural and Food Chemistry. 2006;54(21):8077–8081. Available from: https://dx.doi.org/10.1021/jf0617723
  15. Johar N, Ahmad I, Dufresne A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products. 2012;37(1):93–99. Available from: https://dx.doi.org/10.1016/j.indcrop.2011.12.016
  16. Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD. Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. Journal of Applied Polymer Science. 2009;113(4):2238–2247. Available from: https://dx.doi.org/10.1002/app.30116
  17. Brinchi L, Cotana F, Fortunati E, Kenny JM. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers. 2013;94(1):154–169. Available from: https://dx.doi.org/10.1016/j.carbpol.2013.01.033
  18. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, et al. Bioethanol production from rice straw: An overview. Bioresource Technology. 2010;101(13):4767–4774. Available from: https://dx.doi.org/10.1016/j.biortech.2009.10.079
  19. Kopania E, Wietecha J, Ciechańska D. Studies on isolation of cellulose fibres from waste plant biomass. Fibres Text. East. Eur. 2012;96(6):167–172.
  20. Behera S, Arora R, Nandhagopal N, Kumar S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews. 2014;36:91–106. Available from: https://dx.doi.org/10.1016/j.rser.2014.04.047
  21. Cabrera E, Muñoz MJ, Martín R, Caro I, Curbelo C, Díaz AB. Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresource Technology. 2014;167:1–7. Available from: https://dx.doi.org/10.1016/j.biortech.2014.05.103
  22. Camesasca L, Ramírez MB, Guigou M, Ferrari MD, Lareo C. Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass and Bioenergy. 2015;74:193–201. Available from: https://dx.doi.org/10.1016/j.biombioe.2015.01.017
  23. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB) Cellulose. 2010;17(5):977–985. Available from: https://dx.doi.org/10.1007/s10570-010-9436-4
  24. Nazir MS, Wahjoedi BA, Yussof AW, Abdullah MA. Eco-Friendly Extraction and Characterization of Cellulose from Oil Palm Empty Fruit Bunches. BioResources. 2013;8(2):2161–2172. Available from: https://dx.doi.org/10.15376/biores.8.2.2161-2172
  25. Siddiqui N, Mills RH, Gardner DJ, Bousfield D. Production and Characterization of Cellulose Nanofibers from Wood Pulp. Journal of Adhesion Science and Technology. 2011;25(6-7):709–721. Available from: https://dx.doi.org/10.1163/016942410x525975
  26. Jahan MS, Saeed A, He Z, Ni Y. Jute as raw material for the preparation of microcrystalline cellulose. Cellulose. 2011;18(2):451–459. Available from: https://dx.doi.org/10.1007/s10570-010-9481-z
  27. Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W. Sugar beet cellulose nanofibril-reinforced composites. Cellulose. 2007;14(5):419–425. Available from: https://dx.doi.org/10.1007/s10570-007-9131-2
  28. Sun R, Lawther JM, Banks WB. Influence of alkaline pre-treatments on the cell wall components of wheat straw. Industrial Crops and Products. 1995;4(2):127–145. Available from: https://dx.doi.org/10.1016/0926-6690(95)00025-8
  29. Barlianti V, Dahnum D, Hendarsyah H, Abimanyu H. Effect of Alkaline Pretreatment on Properties of Lignocellulosic Oil Palm Waste. Procedia Chemistry. 2015;16:195–201. Available from: https://dx.doi.org/10.1016/j.proche.2015.12.036
  30. Iroba KL, Tabil LG, Dumonceaux T, Baik OD. Effect of alkaline pretreatment on chemical composition of lignocellulosic biomass using radio frequency heating. Biosystems Engineering. 2013;116(4):385–398. Available from: https://dx.doi.org/10.1016/j.biosystemseng.2013.09.004
  31. Leão A, Sartor SM, Caraschi JC. Natural Fibers Based Composites – Technical and Social Issues. Molecular Crystals and Liquid Crystals. 2006;448(1):161/[763]–177/[779]. doi: 10.1080/15421400500388088
  32. Khalil HPSA, Alwani MS, Omar AKM. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources. 2006;1(2):220–232.
  33. Thiruchitrambalam M, Alavudeen A, Venkateshwaran N. Review on kenaf fiber composites. Rev. Adv. Mater. Sci. 2012;32(2):106–112.
  34. Thygesen A, Thomsen AB, Daniel G, Lilholt H. Comparison of composites made from fungal defibrated hemp with composites of traditional hemp yarn. Industrial Crops and Products. 2007;25(2):147–159. doi: 10.1016/j.indcrop.2006.08.002
  35. Mohanty G, Misra AK, Hinrichsen M, Biofibers. Biofibers, biodegradable polymers and biocomposites. Macromol. Mater. Eng. 2000;276:1–24.
  36. Pardo MES, Cassellis MER, Escobedo RM, García EJ. Chemical Characterisation of the Industrial Residues of the Pineapple (Ananas comosus) Journal of Agricultural Chemistry and Environment. 2014;03(02):53–56. Available from: https://dx.doi.org/10.4236/jacen.2014.32b009
  37. Bhandari NL, Thomas S, Das CK, Adhikari R. Analysis of Morphological and Mechanical Behaviors of Bamboo Flour Reinforced Polypropylene Composites. Nepal Journal of Science and Technology. 2013;13(1):95–100. Available from: https://dx.doi.org/10.3126/njst.v13i1.7447
  38. Oushabi A, Sair S, Hassani FO, Abboud Y, Tanane O, Bouari AE. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering. 2017;23:116–123. Available from: https://dx.doi.org/10.1016/j.sajce.2017.04.005
  39. Ikramullah, Rizal S, Thalib S, Huzni S. Hemicellulose and lignin removal on typha fiber by alkali treatment. IOP Conference Series: Materials Science and Engineering. 2018;352(1):012019. Available from: https://dx.doi.org/10.1088/1757-899x/352/1/012019
  40. Rimdusit S, Smittakorn W, Jittarom S, Tiptipakorn S. Highly Filled Polypropylene Rubber Wood Flour Composites. Engineering Journal. 2011;15(2):17–30. Available from: https://dx.doi.org/10.4186/ej.2011.15.2.17
  41. Government RM, Thaddaeus J, Thompson EO, Ani AK, Apake DD. Optimizing the cellulose content of shea butter bark wood through alkali pretreatment for composite application. Indian J. Sci. Technol. 2019;13(4):384–394. Available from: https://dx.doi.org/10.17485/ijst/2020/ v 013i04/147288
  42. Government R, Olowokere J, Odineze C, Anidobu C, Yerima E, Nnaemeka B. Influence of Soaking Time and Sodium Hydroxide Concentration on the Chemical Composition of Treated Mango Seed Shell Flour for Composite Application. Journal of Applied Sciences and Environmental Management. 2019;23(1):21–28. Available from: https://dx.doi.org/10.4314/jasem.v23i1.3
  43. Cordeiro EMS, Nunes YL, Mattos ALA, Rosa MF, Filho MdsMS, Ito EN. Polymer Biocomposites and Nanobiocomposites Obtained from Mango Seeds. Macromolecular Symposia. 2014;344(1):39–54. Available from: https://dx.doi.org/10.1002/masy.201300217

Copyright

© 2020 Government, Okeke, Odera, Ani, Thaddaeus, Ikechukwu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DON'T MISS OUT!

Subscribe now for latest articles and news.