• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 21, Pages: 2111-2118

Original Article

Simulation of very-low energy alkali ion (≤ 10 KeV) induced effects on Al2O3 micro flakes

Received Date:27 March 2020, Accepted Date:27 April 2020, Published Date:23 June 2020


Objectives: To simulate the Monte-carlo simulation of irradiation of alkali ions (sodium) having very low energy (5 keV and 10 keV) on aluminum oxide micro flakes. Methods/Statistical analysis: We have utilized a simulation process namely SRIM (Stopping of ion ranges in matter), which is based on the binary collision approximation technique. We have fixed our target as an aluminum oxide in the layered structure having a thickness about 65 nm. We have incorporated two different types of ion energy as the input parameters which are normally incident on the targets. We have analyzed ion distributions, recoil distributions, and further ionizations. Findings: The projected average range for 10 keV is significantly found to be higher, almost double than that of 5 keV. The reason behind this increment is due to the high penetration depth because of higher energy. The straggling of 10 keV is higher than that of 5 keV, which is evident from the recoil distribution where the cascade collision has created a large volume of vacancies, which is very high for higher energy. Application/Improvements: This simulation helps us to gather a rich amount of information regarding ion-induced defects, which is highly essential for experiments on aluminum oxide micro flakes. The surface modification after this low ion energy bombardment leads to low detrimental effects which may modify the wetting properties of these flakes
Keywords: Montecarlo simulation; SRIM; Aluminium oxide micro flakes; ion induced defects; BCA


  1. Shi-Gang X, Li-Xin S, Rong-Gen Z, Xing-Fang H. Properties of aluminium oxide coating on aluminium alloy produced by micro-arc oxidation. Surface and Coatings Technology. 2005;199(2-3):184–188. Available from: https://dx.doi.org/10.1016/j.surfcoat.2004.11.044
  2. Argall F, Jonscher AK. Dielectric properties of thin films of aluminium oxide and silicon oxide. Thin Solid Films. 1968;2(3):185–210. Available from: https://dx.doi.org/10.1016/0040-6090(68)90002-3
  3. Chou TC, Nieh TG, McAdams SD, Pharr GM. Microstructures and mechanical properties of thin films of aluminum oxide. Scripta Metallurgica et Materialia. 1991;25(10):2203–2208. Available from: https://dx.doi.org/10.1016/0956-716x(91)90001-h
  4. Shrimali M, Singh KP. New methods of nitrate removal from water. Environmental Pollution. 2001;112:351–359. Available from: https://dx.doi.org/10.1016/s0269-7491(00)00147-0
  5. Slaugh HL, Willis LC. CO2 Removal from gaseous streams. 1984.
  6. Slaugh LH, Willis CL. 1984. Available from: https://patents.google.com/patent/US4433981A/en
  7. Kepák F. Separation of Radionuclides from Gas by Sorption on Activated Charcoal and Inorganic Sorbents. Isotopenpraxis Isotopes in Environmental and Health Studies. 1988;24(1):1–5. Available from: https://dx.doi.org/10.1080/10256018808623882
  8. Ziegler JF, Biersack JP. The stopping and range of ions in matter. In: InTreatise on heavy-ion science. (pp. 93-129) 1985.
  9. Zhu Y, Zhao G, Wang H. SRIM Simulation of Radiation Damage by Proton in Zinc Telluride Cadmium. Journal of Jilin University (Science Edition). 2018;(4).
  10. Hench LL, West JK. The sol-gel process. Chemical Reviews. 1990;90(1):33–72. Available from: https://dx.doi.org/10.1021/cr00099a003
  11. Shulga VI. Note on the artefacts in SRIM simulation of sputtering. Applied Surface Science. 2018;439:456–461. Available from: https://doi.org/10.1016/j.apsusc.2018.01.039
  12. Kaniukov E, Kutuzau M, Bundyukova V, Yakimchuk D, Kozlovskiy A, Borgekov D, et al. SRIM Simulation of Carbon Ions Interaction with Ni Nanotubes. Materials Today: Proceedings. 2019;7:872–877. Available from: https://dx.doi.org/10.1016/j.matpr.2018.12.087
  13. Häberle P, Ibañez W, Barman SR, Cai YQ, Horn K. Photoexcited collective modes in thin alkali layers adsorbed on Al. Elsevier BV. 2001. doi: 10.1016/s0168-583x(01)00661-9
  14. Andrievskii RA. Effect of irradiation on the properties of nanomaterials. The Physics of Metals and Metallography. 2010;110(3):229–240. Available from: https://dx.doi.org/10.1134/s0031918x10090061
  15. Stoller RE, Toloczko MB, Was GS, Certain AG, Dwaraknath S, Garner FA. On the use of SRIM for computing radiation damage exposure. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2013;310:75–80. Available from: https://dx.doi.org/10.1016/j.nimb.2013.05.008


© 2020 Dhal, Patro, Swain, Supraja, Rath. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Subscribe now for latest articles and news.