• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 28, Pages: 2327-2336

Original Article

Simultaneous removal of lead and cadmium ions by nickel oxide nanoparticles

Received Date:02 August 2021, Accepted Date:09 August 2021, Published Date:18 August 2021


Objectives: To study the simultaneous removal of metal ions to understand the dynamics of the adsorption process for the assessment of the actual potential of an adsorbent in real-life applications. Methods: A one-step hydrothermal method was employed for the synthesis of nanomaterial. The hydrothermal treatment was performed at 110o C for 3 hours and calcined at 300o C for 2 hr to complete the nickel oxide nanoparticle synthesis. A systematic study of metal ion adsorption onto the nickel oxide nanoparticle was conducted to evaluate the maximum adsorption capacity and to understand the adsorption behaviour of the metal ions in presence of the others. The estimation of metal ion adsorption was done by measuring the residual concentrations using an atomic absorption spectrophotometer. Findings: The microscopic and spectroscopic characterizations confirmed the formation of nickel oxide nanostructures. The experimental results suggested that the adsorption process follows the Langmuir isotherm and the pseudo-secondorder model for metal ion adsorption in single and mixed solutions. A synergistic effect was observed for Pb (II) adsorption and an antagonistic effect for Cd (II) adsorption. The maximum adsorption capacity of ~650 mg/g of Pb (II) and ~475 mg/g of Cd (II) were noticed for simultaneous adsorption by the NiO nanoparticle. Novelty/improvement: The presence of more than one heavy metal ion in the wastewater is obvious, and one kind of metal ion may interface with the adsorption behaviour of the others. Further, limited studies on simultaneous adsorption of metal ions using metal-oxide nanoparticles are available in the literature. Hence, this work will provide an idea about the applicability of the NiO nanoparticle for real-life applications.

Keywords: Adsorption; NiO; Heavy metal ions; Simultaneous removal


  1. Wang Y, Li J;, Wei Z. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A. 2018;6:8194–8209. Available from: https://doi.org/10.1039/C8TA01321G
  2. Tong Y, Ting ST, Martin C, Jun Z, Wei CJ, Ping FY, et al. Atomically Thin 2D Transition Metal Oxides: Structural Reconstruction, Interaction with Substrates, and Potential Applications. Advanced Materials Interfaces. 2019;6. Available from: https://doi.org/10.1002/admi.201801160
  3. Fang S;, Bresser D;, Passerini S. Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries. Advanced Energy Materials. 2020;10:1902485. Available from: https://doi.org/10.1002/aenm.201902485
  4. Sehrish GR, Iqbal A, Afzal S, Saadat M, Muhammad NUH, Naeem AM, et al. Fabrication of transition-metal oxide and chalcogenide nanostructures with enhanced electrochemical performances. Journal of Energy. 2020;31:101621. Available from: https://doi.org/10.1016/j.est.2020.101621
  5. Eunji L, Soo YY, Dong-Joo K. Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing. ACS Sensors. 2018;3:2045–2060. Available from: https://doi.org/10.1021/acssensors.8b01077
  6. Nirav J, Takeshi H, Yumeng L, Huiliang L, Osvaldo NO, Liwei L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchimica Acta. 2018;185:213. Available from: https://doi.org/10.1007/s00604-018-2750-5
  7. Izzudin NM, Jalil AA, Aziz FFA, Azami MS, Ali MW, Hassan NS, et al. Simultaneous remediation of hexavalent chromium and organic pollutants in wastewater using period 4 transition metal oxide-based photocatalysts: a review. Environmental Chemistry Letters. 2021. Available from: https://doi.org/10.1007/s10311-021-01272-1
  8. Xiaorong G, Dangyuan L, Ruquan Y, Huimin Z, Kwok-Yin W, Kwok-Yin. Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Research. 2003;14:2003–2022. Available from: https://doi.org/10.1007/s12274-020-2955-x
  9. Raheleh YS, Davood G, Masoud SN, Mohammad H. Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites. Journal of Materials Science: Materials in Electronics. 2016;27:1244–1253. Available from: https://doi.org/10.1007/s10854-015-3882-6
  10. Liu G;, Abukhadra, Mostafa R, El-Sherbeeny AM, Mostafa AM, Elmeligy MA. Insight into the photocatalytic properties of [email protected]/NiO composite for effective photo-degradation of malachite green dye and photo-reduction of Cr (VI) under visible light. Journal of Environmental Management. 2020;254:109799. Available from: https://doi.org/10.1016/j.jenvman.2019.109799
  11. Sharma A, Kositski R, Kovalenko O, Mordehai D, Rabkin E. Giant shape- and size-dependent compressive strength of molybdenum nano- and microparticles. Acta Materialia. 2020;198:72–84. Available from: https://doi.org/10.1016/j.actamat.2020.07.054
  12. Akbari A;, Zahra S, Ali HH, Alireza H, Mehrdad K, Majid D. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorganic Chemistry Communications. 2020;115:107867. Available from: https://doi.org/10.1016/j.inoche.2020.107867
  13. Zhifei W, Qianqian S, Jinbo X, Husheng J, Bingshe X, Xuguang L, et al. Annealing temperature effect on 3D hierarchically porous NiO/Ni for removal of trace hexavalent chromium. Materials Chemistry and Physics. 2020;240:122140. Available from: https://doi.org/10.1016/j.matchemphys.2019.122140
  14. Shivangi, Bhardwaj S, Sarkar T. Core-shell type magnetic Ni/NiO nanoparticles as recyclable adsorbent for Pb (II) and Cd (II) ions: One-pot synthesis, adsorption performance, and mechanism. Journal of the Taiwan Institute of Chemical Engineers. 2020;113:223–230. Available from: https://doi.org/10.1016/j.jtice.2020.08.011
  15. Shivangi, Bhardwaj S, Sarkar T. Simultaneous removal of cadmium and lead ions from aqueous solutions by nickel oxide-decorated reduced graphene oxides. International Journal of Environmental Science and Technology. 2021. Available from: https://doi.org/10.1007/s13762-021-03510-z
  16. Wei X, Xueyang Z, Jianjun C, Weixin Z, Feng H, Xin H, et al. Biochar technology in wastewater treatment: A critical review. Chemosphere. 2020;252:126539. Available from: https://doi.org/10.1016/j.chemosphere.2020.126539
  17. Siong CW, Ying CJ, Senthil KP, Muhammad M, Zahid M, Fawzi B, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production. 2021;296:126589. Available from: https://doi.org/10.1016/j.jclepro.2021.126589
  18. Fu F;, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. 2011;92:407–418. Available from: https://doi.org/10.1016/j.jenvman.2010.11.011
  19. Din MAE, Khairia MAQ, OAS, Salma FAQ, Faten AA, et al. Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Scientific Reports. 2021;11:12547. Available from: https://doi.org/10.1038/s41598-021-91093-7
  20. Nakate UT, Ahmad, Rafiq ;, Patil, Yu YT, Hahn YB. Ultra thin NiO nanosheets for high performance hydrogen gas sensor device. Applied Surface Science. 2020;506.
  21. Roy A, Bhattacharya J. A binary and ternary adsorption study of wastewater Cd(II), Ni(II) and Co(II) by γ-Fe2O3 nanotubes. Separation and Purification Technology. 2013;115:172–179. Available from: hhttps://doi.org/10.1016/j.seppur.2013.05.010
  22. Sangeetha K, Vidhya G, Vasugi G, Girija EK. Lead and cadmium removal from single and binary metal ion solution by novel hydroxyapatite/alginate/gelatin nanocomposites. Journal of Environmental Chemical Engineering. 2018;6:1118–1126. Available from: https://doi.org/10.1016/j.jece.2018.01.018
  23. Hongbo X, Yun W, Jian W, Xuewei S, Xiaojun J. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry. Journal of Environmental Sciences. 2013;25:45–49. Available from: https://doi.org/10.1016/S1001-0742(14)60624-0
  24. Marcin K, Ahmed MK, Karolina W, Klaudia K, Jan R, Zbigniew S. Efficient removal of cadmium and lead ions from water by hydrogels modified with cystine. Journal of Environmental Chemical Engineering. 2018;6:3962–3970. Available from: https://doi.org/10.1016/j.jece.2018.05.054
  25. Mohammad B, Mani S, Mostafa MA, Omid S, Akbar B, Saman B. Application of a New Functionalized Nanoporous Silica for Simultaneous Trace Separation and Determination of Cd(II) Food Analytical Methods. 2013;6:1320–1329. Available from: https://doi.org/10.1007/s12161-012-9545-9


© 2021 Sardar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.