• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 35, Pages: 2835-2844

Original Article

Spectral Investigations, DFT Studies, ADME Analysis, Molecular Docking of New Piperidine Derivatives with Potential Antimicrobial Activity

Received Date:21 February 2023, Accepted Date:08 August 2023, Published Date:19 September 2023


Objective: To explore the possibility of obtaining effective and harmless antibacterial drugs by conventional synthesis of new piperidine analogs. Methods: The target compound was carried out by cyclization reaction involving aromatic aldehydes and amine and further evaluated for their antimicrobiological assay using agar disc diffusion method. Computational investigation such as density functional theory (DFT) was carried out by B3LYP/6-31G (d,p) method to evaluate their electronic characteristics. Absorption, Distribution, Metabolism, and Excretion (ADME) properties were evaluated using the Swiss ADME server. The Antimicrobial activity was investigated using molecular docking and that molecule was prepared using MGL Tools 1.5.7. Auto Dock Vina 1.2.0. Findings: Among all the synthesized compounds 5a to 5h, compounds 5b and 5e showed good anti-bacterial properties against three pathogenic bacterial strains. B. subtilis is inhibited by compound 5b at a concentration of 26 mm. B. subtilis is inhibited by compound 5e at a concentration of 25 mm. Molecular Docking revealed that molecules 5b and 5e consistently showed a large binding affinity for all six target proteins, which was similar to that of the reference molecule, streptomycin. Drug-likeness predictions and the ADME analysis showed that most of the molecules do not violate any of the five Lipinski rule while some have only one or two violations, primarily because of high molecular weight. Novelty: In order to investigate the anti-bacterial impact of piperidine derivatives, a lot of work has been put into their synthesis and evaluation. These results might influence the creation and advancement of anti-microbial medication candidates that are more potent.

Keywords: Piperidine; Antimicrobial; SAR Study; Molecular Docking; ADME Study; DFT


  1. Rishikesan R, Karuvalam RP, Muthipeedika NJ, Sajith AM, Eeda KR, Pakkath R, et al. Synthesis of some novel piperidine fused 5-thioxo-1H-1,2,4-triazoles as potential antimicrobial and antitubercular agents. Journal of Chemical Sciences. 2021;133(1). Available from: https://doi.org/10.1007/s12039-020-01872-4
  2. Zabiulla AO, FH, Am S, Al-Ghorbani M, Khanum SA. Recent investigation on heterocycles with one nitrogen [piperidine, pyridine and quinoline. Journal of the Iranian Chemical Society. 2022;19(1):23–27. Available from: https://doi.org/10.1007/s13738-021-02293-x
  3. Ramalingam A, Mustafa N, Chng WJ, Medimagh M, Sambandam S, Issaoui N. 3-Chloro-3-methyl-2,6-diarylpiperidin-4-ones as Anti-Cancer Agents: Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADMET Prediction. Biomolecules. 2022;12(8):1093. Available from: https://doi.org/10.3390/biom12081093
  4. Saadon KE, Taha NMH, Mahmoud NA, Elhagali GAM, Ragab A. Synthesis, characterization, and in vitro antibacterial activity of some new pyridinone and pyrazole derivatives with some in silico ADME and molecular modeling study. Journal of the Iranian Chemical Society. 2022;19(9):3899–3917. Available from: https://doi.org/10.1007/s13738-022-02575-y
  5. Chen QS, Li JQ, Zhang QW. Application of Chiral Piperidine Scaffolds in Drug Design. Pharmaceutical Fronts. 2023;05(01):e1–e14. Available from: https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0043-1764218.pdf
  6. Yıldız M, Yıldırım H, Bayrak N, Çakmak SM, Mataracı-Kara E, Özbek-Çelik B, et al. Design, synthesis, in vitro and in silico characterization of plastoquinone analogs containing piperidine moiety as antimicrobial agents. Journal of Molecular Structure. 2023;1277:134845. Available from: https://doi.org/10.1016/j.molstruc.2022.134845
  7. Mekky AEM, Taha NAS, Mohammed NG, Hussein FRM, Abdelfattah EH, Eldin AAG, et al. Development of pyrazolo[1,5 a]pyrimidine-based antibacterial agents. Synthetic Communications. 2023;53(13):1053–1068. Available from: https://doi.org/10.1080/00397911.2023.2209815
  8. Boyanova L, Gergova G, Nikolov R, Derejian S, Lazarova E, Katsarov N, et al. Activity of Bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar-well diffusion, agar dilution and disc diffusion methods. Journal of Medical Microbiology. 2005;54(5):481–483. Available from: https://doi.org/10.1099/jmm.0.45880-0
  9. Dan Z, Rain N, Badrul A, Adlin AR, Norazah A, A. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Tropical Biomedicine. 22(2):165–170. Available from: https://www.msptm.org/files/165_-_170_In_vitro_screening.pdf
  10. Nielsen AB, Holder A. 2009.
  11. Frisch MJ, Trucks GW, Schlegel HS, Scuseria GE, Robb MA, Cheeseman JR, et al. Wallingford CT. 2013.
  12. Zong Y, Bice TW, Ton-That H, Schneewind O, Narayana SVL. Crystal Structures of Staphylococcus aureus Sortase A and Its Substrate Complex. Journal of Biological Chemistry. 2004;279(30):31383–31389. Available from: https://doi.org/10.1074/jbc.M401374200
  13. Heaslet H, Harris M, Fahnoe K, Sarver R, Putz H, Chang J, et al. Structural comparison of chromosomal and exogenous dihydrofolate reductase from<i>Staphylococcus aureus</i>in complex with the potent inhibitor trimethoprim. Proteins: Structure, Function, and Bioinformatics. 2009;76(3):706–717. Available from: https://doi.org/10.1002/prot.22383
  14. Zhu W, Zhang Y, Sinko W, Hensler ME, Olson J, Molohon KJ, et al. Antibacterial drug leads targeting isoprenoid biosynthesis. Proceedings of the National Academy of Sciences. 2013;110(1):123–128. Available from: https://doi.org/10.1073/pnas.1219899110
  15. Narramore S, Stevenson CEM, Maxwell A, Lawson DM, Fishwick CWG. New insights into the binding mode of pyridine-3-carboxamide inhibitors of E. coli DNA gyrase. Bioorganic & medicinal chemistry. 2019;27:3546–3550. Available from: https://doi.org/10.1016/j.bmc.2019.06.01i
  16. Sanner MF. Python: A Programming Language for Software Integration and Development. Journal of Molecular Graphics and Modelling. 1999;17(1):5–7. Available from: https://pubmed.ncbi.nlm.nih.gov/10660911/
  17. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling. 2021;61(8):3891–3898. Available from: https://doi.org/10.1021/acs.jcim.1c00203
  18. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling. 2011;5(10):1. Available from: https://doi.org/10.1021/ci200227u


© 2023 Agrawal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.