• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 39, Pages: 4168-4188

Original Article

Stationary solutions, critical mass, Tadpole orbits in the circular restricted three-body problem with the more massive primary as an oblate spheroid

Received Date:13 August 2020, Accepted Date:21 October 2020, Published Date:09 November 2020


Background: The location and stability of the equilibrium points are studied for the Planar Circular Restricted Three-Body Problem where the more massive primary is an oblate spheroid. Methods: The mean motion of the equations of motion is formulated from the secular perturbations as derived by(1) and used in(2–4). The singularities of the equations of motion are found for locating the equilibrium points. Their stability is analysed using the linearized variational equations of motion at the equilibrium points. Findings: As the effect of oblateness in the mean motion expression increases, the location and stability of the equilibrium points are affected by the oblateness of the more massive primary. It is interesting to note that all the three collinear points move towards the more massive primary with oblateness. It is a new result. Among the shifts in the locations of the five equilibrium points, the y–location of the triangular equilibrium points relocate the most. It is very interesting to note that the eccentricities (e) of the orbits around L1 and L3 increase, while it decreases around L2 with the addition of oblateness with the new mean motion. The decrease in e is significant in Saturn-Mimas system from 0.95036 to 0.87558. Similarly, the value of the critical mass ratio mc, which sets the limit for the linear stability of the triangular points, further reduces significantly from 0:285: : :A1 to 0:365: : :A1 with the new mean motion. The mean motion sz in the z-direction increases significantly with the new mean motion from 9A1/4 to 9A1/2.

Keywords: Circular Restricted Three-Body Problem (CRTBP); oblateness; mean motion; equilibrium points; critical mass ratio; tadpole orbits


  1. Sharma RK, Sellamuthu H, Jency AA. Perturbed Trojan dynamics in the solar system. In: AAS AIAA Astrodynamics Specialist Conference . p. 20–704.
  2. Arohan R, Sharma RK. Periodic orbits in the planar restricted photo-gravitational problem when the smaller primary is an oblate spheroid. Indian Journal of Science and Technology. 2020;13(16):1630–1640. Available from: https://doi.org/10.17485/IJST/v13i16.401
  3. Sharma RK. Perturbations of Lagrangian points in the restricted three-body problem. Indian Journal of Pure and Applied Mathematics. 1975;6:1099–1102.
  4. McCuskey SW. Introduction to Celestial Mechanics. Addison-Wesley Publishing Company. 1963.
  5. Sharma RK, Rao PVS. A case of commensurability induced by oblateness. Celestial Mechanics. 1978;18(2):185–194. Available from: https://dx.doi.org/10.1007/bf01228715
  6. Sharma RK, Rao PVS. Effect of oblateness on triangular solutions at critical mass. Astrophysics and Space Science. 1979;60(2):247–250. Available from: https://dx.doi.org/10.1007/bf00644329
  7. Sharma RK. Periodic orbits of third kind in the restricted three-body problem with oblateness. Astrophys. And Space Science. 1990;166:211–218. Available from: https://doi.org/10.1007/BF01094894
  8. Rao PVS, Sharma RK. Effect of oblateness on the non-linear stability of L 4 in the restricted three-body problem. Celestial Mechanics and Dynamical Astronomy. 1997;65(3):291–312. Available from: https://dx.doi.org/10.1007/bf00053510
  9. Markellos VV, Papadakis KE, Perdios EA. Non-linear stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness. Astrophysics and Space Science. 1996;245(1):157–164. Available from: https://dx.doi.org/10.1007/bf00637811
  10. Shankaran S, Sharma JP, Ishwar B. Equilibrium points in the generalised photogravitational non-planar restricted three body problem. International Journal of Engineering, Science and Technology. 2011;3(2):63–67. Available from: https://dx.doi.org/10.4314/ijest.v3i2.68133
  11. Safiya Beevi A, Sharma RK. Oblateness effect of Saturn on periodic orbits in the Saturn-Titan restricted three-body problem. Astrophysics and Space Science. 2012;340(2):245–261. Available from: https://dx.doi.org/10.1007/s10509-012-1052-3
  12. Arredondo JA, Guo J, Stoica C, Tamayo C. On the restricted three body problem with oblate primaries. Astrophysics and Space Science. 2012;341(2):315–322. Available from: https://dx.doi.org/10.1007/s10509-012-1085-7
  13. Abouelmagd EI, Asiri HM, Sharaf MA. The effect of oblateness in the perturbed restricted three-body problem. Meccanica. 2013;48(10):2479–2490. Available from: https://dx.doi.org/10.1007/s11012-013-9762-3
  14. Tiwary RD, Kushvah BS. Computation of halo orbits in the photogravitational Sun-Earth system with oblateness. Astrophysics and Space Science. 2015;357(1):1–16. Available from: https://dx.doi.org/10.1007/s10509-015-2243-5
  15. Pathak N, Thomas VO. Analysis of Effect of Oblateness of Smaller Primary on the Evolution of Periodic Orbits. International Journal of Astronomy and Astrophysics. 2016;06(04):440–463. Available from: https://dx.doi.org/10.4236/ijaa.2016.64036
  16. Chidambararaj P, Sharma RK. Halo Orbits around Sun-Earth L1 in Photogravitational Restricted Three-Body Problem with Oblateness of Smaller Primary. International Journal of Astronomy and Astrophysics. 2016;06(03):293–311. Available from: https://dx.doi.org/10.4236/ijaa.2016.63025
  17. Ansari AA, Alam M. Dynamics in the circular restricted three body problem with perturbations. International Journal of Advanced Astronomy. 2017;5(1):19. Available from: https://dx.doi.org/10.14419/ijaa.v5i1.7102
  18. Pathak N, Thomas VO, Abouelmagd EI. The perturbed photogravitational restricted three-body problem: analysis of resonant periodic orbits. Discrete and continuous dynamical systems: Series S. 2019;12:849–875. Available from: https://doi.org/10.3934/dcdss.2019057
  19. Szebehely V. Theory Of Orbits. New York. Academic Press. 1967.
  20. Danby JMA. Fundamentals of Celestial Mechanics (2). VA, USA. Willmann-Bell, Inc. 1988.
  21. Murray CD, Dermott SF. Solar System Dynamics. Cambridge. Cambridge University Press. 1999.


© 2020 Arantza Jency et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.