• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 41, Pages: 4307-4318

Original Article

Statistical optimization of culture medium composition for enhanced zeaxanthin production by Cyanophycean microalgae Trichodesmium thiebautii (NIOT 152)

Received Date:02 August 2020, Accepted Date:09 September 2020, Published Date:24 November 2020

Abstract

Background/Objectives: Zeaxanthin is a xanthophyll carotenoid revered for its role in the prevention of age related macular degeneration. The study evaluated the zeaxanthin accumulation potential of the marine Cyanophycean alga Trichodesmium thiebautii (NIOT 152). A sequential statistical technique was applied to optimize the Artificial Sea Water nutrient medium (ASN-III) components for enhancing the zeaxanthin accumulation in T. thiebautii. Methods: A two-level statistical approach involving Plackett-Burman (PB) design to screen the most important nutrients influencing the zeaxanthin accumulation followed by Response surface methodology (RSM) was employed. The results of PB design revealed sodium nitrate, disodium EDTA, magnesium sulphate and sodium carbonate as the crucial medium components for increasing zeaxanthin accumulation. Further, RSM was employed to study the interaction between these factors and identified an optimum concentration of the ingredients for higher zeaxanthin production. Findings: The optimized medium components resulted in 2.33 fold increase in zeaxanthin accumulation (4.3 ± 0.29 mg L-1) as compared to ASN III medium (1.84 ± 0.12 mg L-1). Novelty: There are only few studies on laboratory cultured Trichodesmium and only very few reports are available regarding pigment production from Trichodesmium sp. The present study successfully demonstrated the statistical optimization of ASN III medium to improve zeaxanthin accumulation by Trichodesmium thiebautii.
Keywords: ASN III medium; zeaxanthin; Trichodesmium thiebautii; Plackett-Burman; response surface methodology

References

  1. Scripsema NK, Hu DN, Rosen RB. Lutein, Zeaxanthin, and meso-Zeaxanthin in the clinical management of eye disease. Journal of Ophthalmology. 2015;2015:1–13. Available from: https://dx.doi.org/10.1155/2015/865179
  2. Nishino HM, Murakosh, Ii T, Takemura M, Kuchide M, Kanazawa XY, et al. Carotenoids in cancer chemoprevention. Cancer Metastasis Reviews. 2002;21:257–264.
  3. Murray IJ, Makridaki M, Veen RLPvd, Carden D, Parry NRA, Berendschot TTJM. Lutein Supplementation over a One-Year Period in Early AMD Might Have a Mild Beneficial Effect on Visual Acuity: The CLEAR Study. Investigative Opthalmology & Visual Science. 2013;54(3). Available from: https://dx.doi.org/10.1167/iovs.12-10715
  4. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. British Journal of Ophthalmology. 2012;96(5):614–618. Available from: https://dx.doi.org/10.1136/bjophthalmol-2011-300539
  5. Nwachukwu ID, Udenigwe CC, Aluko RE. Lutein and zeaxanthin: Production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends in Food Science & Technology. 2016;49:74–84. Available from: https://dx.doi.org/10.1016/j.tifs.2015.12.005
  6. Westberry TK, Siegel DA. Spatial and temporal distribution ofTrichodesmiumblooms in the world's oceans. Global Biogeochemical Cycles. 2006;20(4). Available from: https://dx.doi.org/10.1029/2005gb002673
  7. Bertin MJ, Wahome PG, Zimba PV, He H, Moeller PD. Trichophycin A, a cytotoxic linear polyketide isolated from a Trichodesmium thiebautii Bloom. Marine Drugs. 2017;15(10). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295230/
  8. Prommuak C, Pavasant P, Quitain AT, Goto M, Shotipruk A. Simultaneous production of biodiesel and free Lutein from Chlorella vulgaris. Chemical Engineering & Technology. 2013;36(5):733–739. Available from: https://dx.doi.org/10.1002/ceat.201200668
  9. Kyriakopoulou K, Papadaki S, Krokida M. Life cycle analysis of β-carotene extraction techniques. Journal of Food Engineering. 2015;167:51–58. Available from: http://scholar.google.co.in/citations?user=2hZE4_wAAAAJ&hl=en
  10. Sawale SD, Lele SS. Increased dextran sucrase production by response surface methodology from Leuconostoc species; isolated from fermented idli batter. Global Journal of Biotechnology and Biochemistry. 2009;4:160–167.
  11. Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology. 1979;111(1):1–61. Available from: https://dx.doi.org/10.1099/00221287-111-1-1
  12. Zhang Y, Liu Z, Sun J, Xue C, Mao X. Biotechnological production of zeaxanthin by microorganisms. Trends in Food Science and Technology. 2018;71:225–234. Available from: https://www.sciencedirect.com/science/article/pii/S0924224417302571
  13. Takaichi S. Carotenoids in Algae: Distributions, Biosyntheses and Functions. Marine Drugs. 2011;9(6):1101–1118. Available from: https://dx.doi.org/10.3390/md9061101
  14. Becker EW, Biotechnology, Microbiology, Cambridge. Microalgae Biotechnology and Microbiology. Cambridge University Press. 1994.
  15. Zhu C, Lee Y. Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology. 1997;9:189–194. Available from: https://link.springer.com/article/10.1023/A:1007914806640
  16. Shi XM, Chen F, Yuan JP, Chen H. Heterotrophic production of lutein by selected Chlorella strains. Journal of Applied Phycology. 1997;9:445–450. Available from: http://hub.hku.hk/handle/10722/68535
  17. Priyanka S, Jirubhagaran R, Leema JTM. Statistical optimization of bg11 medium for enhanced zeaxanthin productivity in Synechococcus marinus (NIOT-208) International Journal of pharma and Bio Sciences. 2019;10(3):58–70. Available from: https://dx.doi.org/10.22376/ijpbs.2019.10.3.b58-70
  18. Bennet J, Bogorad I. Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology. 1973;58:419–435. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109051/
  19. Boussiba S, Richmond AE. Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Archives of Microbiology. 1979;120(2):155–159. Available from: https://dx.doi.org/10.1007/bf00409102
  20. Guyon JB, Verge V, Schatt P, Lozano JC, Liennard M, Bouget FY. Comparative Analysis of Culture Conditions for the Optimization of Carotenoid Production in Several Strains of the Picoeukaryote Ostreococcus. Marine Drugs. 2018;16(3). Available from: https://dx.doi.org/10.3390/md16030076
  21. Plackett RL, Burman JP. THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS. Biometrika. 1946;33(4):305–325. Available from: https://dx.doi.org/10.1093/biomet/33.4.305
  22. Box G, Wilson KB. On the experimental attainment of optimum conditions. Annals of Mathematics and Statistics. 1951;13:1–45. Available from: https://doi.org/10.1111/j.2517-6161.1951.tb00067.x
  23. Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ. Trichodesmium– a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiology Reviews. 2013;37(3):286–302. Available from: https://dx.doi.org/10.1111/j.1574-6976.2012.00352.x
  24. Carpenter EJ, Capone DG. Nitrogen fixation in Trichodesmium blooms. Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs. 1992;p. 211–217. Available from: https://link.springer.com/chapter/10.1007/978-94-015-7977-3_13
  25. Paerl HW, Prufert-Bebout LE, Guo C. Iron-Stimulated N2 Fixation and Growth in Natural and Cultured Populations of the Planktonic Marine Cyanobacteria Trichodesmium spp. Applied and Environmental Microbiology. 1994;60(3):1044–1047. Available from: https://dx.doi.org/10.1128/aem.60.3.1044-1047.1994
  26. Burns JA, Zehr JP, Montoya JP, Kustka AB, Capone DG. EFFECT OF EDTA ADDITIONS ON NATURALTRICHODESMIUMSPP. (CYANOPHYTA) POPULATIONS. Journal of Phycology. 2006;42(4):900–904. Available from: https://dx.doi.org/10.1111/j.1529-8817.2006.00239.x
  27. Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry. 2008;43(4):398–405. Available from: https://dx.doi.org/10.1016/j.procbio.2008.01.004
  28. Shinde SD, Lele SS. Statistical media optimization for lutein production from microalgae Auxenachlorella protothecoides SAG 211-7A. International Journal of Advances in Biotechnological Research. 2010;1:104–114. Available from: https://core.ac.uk/download/pdf/76991090.pdf
  29. Maldonade IR, Rodriguez-Amaya DB, Scamparini AR. Statistical optimisation of cell growth and carotenoid production by rhodotorula mucilaginosa. Brazilian Journal of Microbiology. 2012;43:109–115. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768983/
  30. White DA, Pagarette A, Rooks P, St A. The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. Journal of Applied Phycology. 2013;25:153–165. Available from: https://pubag.nal.usda.gov/catalog/529338
  31. Yang F, Long L, Sun X, Wu H, Li T, Xiang W. Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus sp. Marine Drugs. 2014;12(3):1245–1257. Available from: https://dx.doi.org/10.3390/md12031245
  32. Neto WAF, Mendes CRB, Abreu PC. Carotenoid production by the marine microalgae Nannochloropsis oculata in different low-cost culture media. Aquaculture Research. 2018;49(7):2527–2535. Available from: https://dx.doi.org/10.1111/are.13715
  33. Basu S, Gledhill M, Beer Dd, Matondkar SGP, Shaked Y. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust. Communications Biology. 2019;2(1). Available from: https://dx.doi.org/10.1038/s42003-019-0534-z
  34. Capone D. Marine nitrogen fixation: what’s the fuss. Journal of Current Opinion in Microbiology. 2001;4:341–348. Available from: http://dornsife.usc.edu/assets/sites/125/docs/Capone_2001_Nature.pdf

Copyright

© 2020 Priyanka et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.