• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 48, Pages: 4688-4702

Original Article

Streamlit Application for Advanced Ensemble Learning Methods in Crop Recommendation Systems – A Review and Implementation

Received Date:11 November 2023, Accepted Date:28 November 2023, Published Date:29 December 2023


Objectives: This article explores the integration of advanced ensemble machine learning methods within precision agriculture, aiming to enhance the reliability and practical utility of crop recommendation systems. The incorporation of the Streamlit framework in the development process underpins our objective to deliver a user-friendly tool that provides farmers and agricultural analysts with actionable insights. Methods: A thorough literature review of artificial intelligence applications in agriculture serves as the foundation of our study, with a strong emphasis placed on sophisticated ensemble learning techniques such as stacking, an ensemble of ensembles, and federated learning. The evaluation methodology entails a comparative analysis where these cutting-edge techniques are juxtaposed against standard machine learning benchmarks to ascertain their performance improvement. In addition to the conceptual analysis, we implement a crop recommendation system using the Streamlit framework, emphasizing usability and accessibility for end-users to interact with machine learning predictions based on their soil data. Findings: The empirical results demonstrate that our chosen advanced ensemble learning methods significantly improve predictive performance, recording up to a 15% accuracy increment over traditional machine learning algorithms. Their adaptability to varied agricultural datasets, coupled with robust privacy-preserving properties, stand out. When deploying these methods in a practical Streamlit-based application, we note a marked increase of 20% in user efficiency, solidifying the system's crucial role in bolstering resilient crop management tactics. Novelty: This research pioneers the study of innovative ensemble learning techniques, married with Streamlit app development for an enhanced user experience in data-driven precision agriculture. Our findings emphasize the critical need for incorporating these advanced methodologies into real-world practices, fostering a significant paradigm shift in agricultural data analytics and management. The synergy between these powerful machine learning techniques and the Streamlit-built interactive interface represents a step forward in translating complex computational analysis into practical, on-the-ground tools for agriculture professionals.

Keywords: Machine Learning, Advanced Ensemble Learning, Streamlit.


  1. Mohammed A, Kora R. A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal of King Saud University - Computer and Information Sciences. 2023;35(2):757–774. Available from: https://doi.org/10.1016/j.jksuci.2023.01.014
  2. Yin XC, Huang K, Hao HW. DE2: Dynamic ensemble of ensembles for learning nonstationary data. Neurocomputing. 2015;165:14–22. Available from: https://doi.org/10.1016/j.neucom.2014.06.092
  3. Zhang L, Zhou WD. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition. 2011;44(1):97–106. Available from: https://doi.org/10.1016/j.patcog.2010.07.021
  4. Lu M, Hou Q, Qin S, Zhou L, Hua D, Wang X, et al. A Stacking Ensemble Model of Various Machine Learning Models for Daily Runoff Forecasting. Water. 2023;15(7):1–19. Available from: https://doi.org/10.3390/w15071265
  5. Ghasemieh A, Lloyed A, Bahrami P, Vajar P, Kashef R. A novel machine learning model with Stacking Ensemble Learner for predicting emergency readmission of heart-disease patients. Decision Analytics Journal. 2023;7:1–13. Available from: https://doi.org/10.1016/j.dajour.2023.100242
  6. Casado FE, Lema D, Iglesias R, Regueiro CV, Barro S. Ensemble and continual federated learning for classification tasks. Machine Learning. 2023;112(9):3413–3453. Available from: https://doi.org/10.1007/s10994-023-06330-z
  7. Yu H, Wu C, Yu H, Wei X, Liu S, Zhang Y. A federated learning algorithm using parallel-ensemble method on non-IID datasets. Complex & Intelligent Systems. 2023;9(6):6891–6903. Available from: https://doi.org/10.1007/s40747-023-01110-7
  8. Mabrouk A, Redondo RPD, Elaziz MA, Kayed M. Ensemble Federated Learning: An approach for collaborative pneumonia diagnosis. Applied Soft Computing. 2023;144:1–15. Available from: https://doi.org/10.1016/j.asoc.2023.110500
  9. Bakopoulou E, Tillman B, Markopoulou A. FedPacket: A Federated Learning Approach to Mobile Packet Classification. IEEE Transactions on Mobile Computing. 2022;21(10):3609–3628. Available from: https://ieeexplore.ieee.org/document/9352526?denied=
  10. Alharbi A, Kalkatawi M, Taileb M. Arabic Sentiment Analysis Using Deep Learning and Ensemble Methods. Arabian Journal for Science and Engineering. 2021;46(9):8913–8923. Available from: https://doi.org/10.1007/s13369-021-05475-0
  11. Ali F, El-Sappagh S, SMRI, Kwak D, Ali A, MI, et al. A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Information Fusion. 2020;63:208–222. Available from: https://doi.org/10.1016/j.inffus.2020.06.008
  12. Akkem Y, Biswas SK, Varanasi A. Smart farming using artificial intelligence: A review. Engineering Applications of Artificial Intelligence. 2023;120:105899. Available from: https://doi.org/10.1016/j.engappai.2023.105899
  13. Akkem Y, Biswas SK, Varanasi A. Smart Farming Monitoring Using ML and MLOps. In: ICICC 2023: International Conference on Innovative Computing and Communications, Lecture Notes in Networks and Systems. (Vol. 703, pp. 665-675) Springer Nature Singapore. 2023.
  14. Arshad J, Tariq R, Saleem S, Rehman AU, Munir HM, Golilarz NA, et al. Intelligent greenhouse monitoring and control scheme: An arrangement of Sensors, Raspberry Pi based Embedded System and IoT platform. Indian Journal of Science and Technology. 2020;13(27):2811–2822. Available from: https://doi.org/10.17485/IJST/v13i27.311
  15. Yaganteeswarudu A, Varanasi A, Mohanty S. Security in Software Applications by Using Data Science Approaches. In: Proceedings of International Conference on Sustainable Expert Systems, Lecture Notes in Networks and Systems . (Vol. 176, pp. 353-362) Springer Singapore. 2021.
  16. Kalaivani P, Selvi S. Machine Learning Approach to Analyse Ensemble Models and Neural Network Model for E-Commerce Application. Indian Journal of Science and Technology. 2020;13(28):2849–2857. Available from: https://doi.org/10.17485/IJST/v13i28.927
  17. Zhao C, Peng R, Wu D. Bagging and Boosting Fine-tuning for Ensemble Learning. IEEE Transactions on Artificial Intelligence. 2023;p. 1–15. Available from: https://ieeexplore.ieee.org/document/10185600
  18. Jiao B, Guo Y, Yang C, Pu J, Zheng Z, Gong D. Incremental Weighted Ensemble for Data Streams with Concept Drift. IEEE Transactions on Artificial Intelligence. 2022;p. 1–12. Available from: https://doi.org/10.1109/TAI.2022.3224416
  19. Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive models from federated Electronic Health Records. International Journal of Medical Informatics. 2018;112:59–67. Available from: https://doi.org/10.1016/j.ijmedinf.2018.01.007
  20. Hamer J, Mohri M, Suresh AT. Fedboost: A communication-efficient algorithm for federated learning. In: Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine Learning Research. (Vol. 119, pp. 3973-3983) 2020.
  21. Hard A, Rao K, Mathews R, Ramaswamy S, Beaufays F, Augenstein S, et al. Federated Learning for Mobile Keyboard Prediction. 2018. Available from: https://arxiv.org/abs/1811.03604
  22. Li Q, Wen Z, Wu Z, Hu S, Wang N, Li Y, et al. A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. IEEE Transactions on Knowledge and Data Engineering. 2023;35(4):3347–3366. Available from: https://www.computer.org/csdl/journal/tk/2023/04/09599369/1yeC6H5zaqQ
  23. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. Federated optimization in heterogeneous networks. 2018. Available from: https://doi.org/10.48550/arXiv.1812.06127
  24. Konečnỳ J, Mcmahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D. Federated learning: strategies for improving communication efficiency. 2016. Available from: https://arxiv.org/abs/1610.05492
  25. Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V. Federated learning with non-iid data. 2018. Available from: https://arxiv.org/abs/1806.00582
  26. Xiao Z, Xu X, Xing H, Song F, Wang X, Zhao B. A federated learning system with enhanced feature extraction for human activity recognition. Knowledge-Based Systems. 2021;229:107338. Available from: https://doi.org/10.1016/j.knosys.2021.107338
  27. Ma X, Zhang J, Guo S, Xu W. Layer-wised Model Aggregation for Personalized Federated Learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA, 18-24 June 2022. IEEE. p. 10092–10101.
  28. ARMTI, Talukdar S, SM, Kundu S, KUE, Pham QB, et al. Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers. 2021;12(3):1–18. Available from: https://doi.org/10.1016/j.gsf.2020.09.006
  29. Boukellouz W, Moussaoui A. Magnetic resonance-driven pseudo CT image using patch-based multi-modal feature extraction and ensemble learning with stacked generalisation. Journal of King Saud University - Computer and Information Sciences. 2021;33(8):999–1007. Available from: https://doi.org/10.1016/j.jksuci.2019.06.002
  30. Zhou T, Jiao H. Exploration of the Stacking Ensemble Machine Learning Algorithm for Cheating Detection in Large-Scale Assessment. Educational and Psychological Measurement. 2022;83(4):831–854. Available from: https://doi.org/10.1177/00131644221117193
  31. HC, Gu Y, JF, Hu Y, Ding W, He H, et al. Application of stacking ensemble learning model in quantitative analysis of biomaterial activity. Microchemical Journal. 2022;183:108075. Available from: https://doi.org/10.1016/j.microc.2022.108075
  32. Gupta A, Jain V, Singh A. Stacking Ensemble-Based Intelligent Machine Learning Model for Predicting Post-COVID-19 Complications. New Generation Computing. 2022;40(4):987–1007. Available from: https://doi.org/10.1007/s00354-021-00144-0
  33. Mandal U, Chakarborty A, Mahato P, Das G. LinVec: A Stacked Ensemble Machine Learning Architecture for Analysis and Forecasting of Time-Series Data. Indian Journal Of Science And Technology. 2023;16(8):570–582. Available from: https://doi.org/10.17485/IJST/v16i8.2197
  34. Muthulakshmi P, Parveen M, Rajeswari P. Prediction of Heart Disease using Ensemble Learning. Indian Journal Of Science And Technology. 2023;16(20):1469–1476. Available from: https://doi.org/10.17485/IJST/v16i20.2279


© 2023 Akkem et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.