• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 33, Pages: 1605-1612

Original Article

Structural, Dielectric Properties and Conduction Mechanism of SrBi4Ti4O15 Ceramics

Received Date:28 February 2022, Accepted Date:10 July 2022, Published Date:26 August 2022


Objectives: 1. To prepare SrBi4Ti4O15 ceramics via solid-state reaction method. 2. To make a systematic investigations on structural and dielectric properties of SBT ceramics. Methods: The structural information of Strontium Bismuth Titanate (SBT) ceramics is examined by X-ray diffraction and Raman spectroscopy techniques. The surface morphology and elemental analysis of SBT ceramic is employed by scanning electron microscope attached with energydispersive X-ray spectroscopy. The dielectric measurements of SBT ceramics were performed using the impedance analyzer HIOKI-3532 LCR meter. Findings: From the X-ray diffraction studies, SBT exhibits a strongest diffraction peak (1 1 9) with the lattice parameters a = 5.428 Å, b = 5.423 Å, and c = 42.146 Å. The diffraction patterns were indexed to the orthorhombic phase. The surface morphology of the samples shows plate-like morphology with a grain size of ~1mm. The temperature-dependent ac conductivity confirms the thermally activated conduction mechanism. The ac conductivity of SBT ceramic was increased from 2.25  10-5 to 7.16  10-4 Ω.m-1 with an increase of frequency from 10 kHz to 1 MHz. The high curie temperature at ~540 ◦C, and low dielectric loss of ~0.031 for SBT ceramics can be appropriate for high-temperature electronic applications. Novelty: SBT ceramic exhibits enhanced electrical conductivity value (7.16  10-4 Ω.m-1)and makes it suitable for electronic device applications.

Keywords: Scanning electron microscope; Dielectric constant; Dielectric loss; Conduction mechanism 1; X-ray diffraction


  1. Wu Y, Zhao X, Zhang Z, Xiang J, Suo H, Guo C. Dual-mode dichromatic SrBi4Ti4O15: Er3+ emitting phosphor for anti-counterfeiting application. Ceramics International. 2021;47(11):15067–15072. Available from: https://doi.org/10.1016/j.ceramint.2021.02.064
  2. Uppala R, Zacharias E, Anand G, Sarah P. Modelling of Dielectric Studies on Rare-Earth Substituted Strontium Bismuth Titanate Using Modified Lorentz Equation. Integrated Ferroelectrics. 2021;221(1):245–253. Available from: https://doi.org/10.1080/10584587.2021.1965831
  3. Nayak P, Nayak SK, Badapanda T. Piezoelectricity and excellent thermal stability in W6+ modified SrBi4Ti4O15 ceramics. AIP Conference Proceedings. 2020;2265:030018. Available from: https://doi.org/10.1063/5.0017189
  4. Rambabu A, Raju KCJ. Impact of Sm-substitution and microwave sintering on dielectric and mechanical properties of SrBi4Ti4O15 ceramics. Journal of Materials Science: Materials in Electronics. 2020;31(22):19698–19712. Available from: https://doi.org/10.1007/s10854-020-04496-z
  5. Babu BS, Prasad G, Kumar GS, Prasad NV. Studies on samarium modified SrBi4Ti4O15 Aurivillius ferroelectric ceramics. Ferroelectrics. 2021;572(1):106–117. Available from: https://doi.org/10.1080/00150193.2020.1868876
  6. Ravikiran U, Sarah P, Zacharias E. Electrical studies on Na and Sm substituted strontium bismuth titanate (SBTi) ceramics. Ferroelectrics. 2021;571(1):61–75. Available from: https://doi.org/10.1080/00150193.2020.1853740
  7. Wang Y, Liu H, Yan T, Zhao J, Li J, Guo S, et al. Significantly reduced conductivity in strontium titanate-based lead-free ceramics by excess bismuth. Materials Letters. 2022;309:131453. Available from: https://doi.org/10.1016/j.matlet.2021.131453
  8. Elfadl AA, Bashal AH, Althobaiti MG. A Study on Dielectric Permittivity, Structure, and AC Conductivity of Zinc and Copper Doped Bentonite Composites. Journal of Inorganic and Organometallic Polymers and Materials. 2022;32(1):191–199. Available from: https://doi.org/10.1007/s10904-021-02112-z
  9. Liu F, Jiang X, Chen C, Nie X, Huang X, Chen Y, et al. Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15—Bi4Ti3O12 inter-growth ceramics. Frontiers of Materials Science. 2019;13(1):99–106. Available from: https://doi.org/10.1007/s11706-019-0454-3
  10. Sharma VK, Nathawat R, Rathore SS. Dielectric properties correlation with microstructure in ABi4Ti4O15 (A = Sr, Ba) bismuth layered ferroelectrics. Materials Advances. 2022;3(12):4890–4898. Available from: https://doi.org/10.1039/D2MA00333C
  11. Kotb HM, Ahmad MM, Ansari SA, Kayed TS, Alshoaibi A. Dielectric Properties of Colossal-Dielectric-Constant Na1/2La1/2Cu3Ti4O12 Ceramics Prepared by Spark Plasma Sintering. Molecules. 2022;27(3):779. Available from: https://doi.org/10.3390/molecules27030779
  12. Yu L, Hao J, Li W, Fu P, Sun W, Chen C, et al. Strong red emission and enhanced electrical properties in Pr-doped SrBi4Ti4O15 multifunctional ceramics. Journal of Materials Science: Materials in Electronics. 2019;30(19):17890–17898. Available from: https://doi.org/10.1007/s10854-019-02141-y
  13. Kumar NS, Suvarna RP, Naidu KCB. Negative dielectric behavior in tetragonal La0.8Co0.2-xEuxTiO3 (x = 0.01–0.04) nanorods. Materials Characterization. 2020;166(8):110425. Available from: https://doi.org/10.1016/j.matchar.2020.110425
  14. Ravikiran U, Sarah P, Suresh MB, Zacharias E. Effect of Sm and Na substitution on dielectric properties of SrBi4Ti4O15. Ferroelectrics. 2018;537(1):237–245. Available from: https://doi.org/10.1080/00150193.2018.1528947


© 2022 Lakshmipathi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.