• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 17, Pages: 1767-1775

Original Article

Study of Conduction Mechanisms in Alkali and Transition Metal Oxides Doped Borosilicate Glasses

Received Date:14 February 2024, Accepted Date:27 March 2024, Published Date:23 April 2024

Abstract

Objectives: To synthesise a unique set of borosilicate glasses of composition, xLi2O + 0.15SiO2 + 0.45B2O3 + 0.05ZnO + (0.35 – x) WO3; (0.25 ≤ x ≤ 0.34) and to investigate conduction mechanisms. Methods: Glasses were synthesized by melt quenching technique. From the XRD spectra samples were conformed to be non-crystalline in nature. Density has been measured by following Archimedes principle and is found to decrease with Li2O mole fractions in the range 2.900 gm/cm3 – 2.495 gm/cm3. DC-conductivity was measured for the temperature range 303K – 525 K using two probe technique. Findings: It was found that these glasses behave like semiconductors in terms conductivity variation with temperature. Conductivity decreased with Li2O content up to 0.33 mole fractions and increases for higher mole fractions. High temperature conductivity variation i.e., above ϴD/2 (ϴD = Debye’s temperature) is found to follow the Mott’s small polaron hopping (SPH) model. Activation energy for conduction above ϴD/2 is found to be in the range 0.282 eV-0.702 eV. Decrease of conductivity and activation energy with increase of Li2O content has been explained in terms of dynamic nature of network and formation of cation-polaron neutral entities. The conductivity below ϴD/2 has been found to follow Mott’s variable range hopping (VRH) models. The density of states at Fermi level derived from Mott’s VRH are found to be of the order of 1023 eV-1cm-3 which are in close agreement with reported ranges for transition metal oxides doped glasses. Novelty: A unique set of mixed conducting borosilicate glasses have been prepared and investigated thoroughly for conduction mechanisms.

Keywords: Borosilicate glasses, Density, Conductivity, Activation energy, Density of states

References

  1. Alatawi AS, Alturki AM, Soliman GM, Abulyazied DE, Taha MA, Youness RA. Improved toughness, electrical conductivity and optical properties of bioactive borosilicate glasses for orthopedic applications. Applied Physics A. 2021;127(12). Available from: https://dx.doi.org/10.1007/s00339-021-05116-1
  2. El-Damrawi G, Abdelghany AM, Hassan AK, Faroun B. Effect of BO4 and FeO4 Structural Units on Conduction Mechanism of Iron Borosilicate Glasses. Silicon. 2021;13(11):4025–4031. Available from: https://dx.doi.org/10.1007/s12633-020-00694-w
  3. El-Damrawi G, Abdelghany AM, Hassan AK, Faroun B. Conductivity and morphological studies on iron borosilicate glasses. Journal of Non-Crystalline Solids. 2020;545. Available from: https://dx.doi.org/10.1016/j.jnoncrysol.2020.120233
  4. Malge A, Sankarappa T, Devidas GB, Sujatha T. Dielectric relaxation in zinc-borotellurite glasses doped with alkali, transition and rare earth oxides. In: Second International Conference on Applied Physics, Power and Material Science, Journal of Physics: Conference Series. (Vol. 1451, pp. 1-6) IOP Publishing. 2020.
  5. Taha TA, Alomairy S, Saad SA, Tekin HO, Al-Buriahi MS. Synthesis and dielectric relaxation behavior of 55B2O3–15SiO2– 30Na2O: WO3 glass system. Ceramics International. 2021;47(14):20201–20209. Available from: https://dx.doi.org/10.1016/j.ceramint.2021.04.027
  6. Moustafa MG, Shreif A, Ghalab S. Towards superior optical and dielectric properties of borosilicate glasses containing tungsten and vanadium ions. Materials Chemistry and Physics. 2020;254:123464. Available from: https://dx.doi.org/10.1016/j.matchemphys.2020.123464
  7. Abdel-karim AM, Fayad AM, El-kashef IM, Saleh HA. Influence of Vanadium Oxide on the Optical and Electrical Properties of Li (Oxide or Fluoride) Borate Glasses. Journal of Electronic Materials. 2023;52(4):2409–2420. Available from: https://dx.doi.org/10.1007/s11664-022-10187-8
  8. Ke Z, Cao X, Shan C, Shi L, Wang P, Yang Y, et al. The effect of alkali metal oxide on the properties of borosilicate fireproof glass: Structure, thermal properties, viscosity, chemical stability. Ceramics International. 2021;47(14):19605–19613. Available from: https://dx.doi.org/10.1016/j.ceramint.2021.03.298
  9. Husenkhan DB, , Sankarappa T, Malge A. DC Conductivity of Lithium-Zinc-Boro- Phosphate Glasses. Indian Journal of Science and Technology. 2021;14(46):3416–3424. Available from: https://dx.doi.org/10.17485/ijst/v14i46.1890
  10. Gundale SS, Behare VV, Deshpande AV. Study of electrical conductivity of Li2O-B2O3-SiO2-Li2SO4 glasses and glass-ceramics. Solid State Ionics. 2016;298:57–62. Available from: https://dx.doi.org/10.1016/j.ssi.2016.11.002
  11. Moustafa MG, Morshidy H, Mohamed AR, El-Okr MM. A comprehensive identification of optical transitions of cobalt ions in lithium borosilicate glasses. Journal of Non-Crystalline Solids. 2019;517:9–16. Available from: https://dx.doi.org/10.1016/j.jnoncrysol.2019.04.037
  12. Devidas A, Sankarappa T, Malge A, Heerasingh M, Raghavendra B. Electrical and gamma ray shielding characteristics of zinc-borovanadate glasses mixed with MnO. Journal of the Australian Ceramic Society. 2023;59(2):391–402. Available from: https://dx.doi.org/10.1007/s41779-023-00840-8
  13. Devidas A, Sankarappa T, Malge A, Heerasingh M. Gamma-ray Shielding Characteristics and Electrical Properties of Na2O Doped Zinc-Boro-Vanadate Glasses. Journal Transactions of the Indian Ceramic Society. 2023;82(2):97–104. Available from: http://dx.doi.org/10.1080/0371750X.2023.2175040
  14. Ashwajeet JS, Sankarappa T, Sujatha T, Ramanna R. Thermal and electrical properties of (B2O3-TeO2-Li2O-CoO) glasses. Journal of Non-Crystalline Solids. 2018;486:52–57. Available from: https://dx.doi.org/10.1016/j.jnoncrysol.2018.02.010
  15. Biswas D, Ningthemcha RKN, Das AS, Singh LS. Structural characterization and electrical conductivity analysis of MoO3–SeO2–ZnO semiconducting glass nanocomposites. Journal of Non-Crystalline Solids. 2019;515:21–33. Available from: https://dx.doi.org/10.1016/j.jnoncrysol.2019.04.002
  16. Das AS, Roy M, Roy D, Bhattacharya S. DC electrical properties and non–adiabatic small polaron hopping in V2O5–CdO–ZnO glass nanocomposites. Indian Journal of Pure & Applied Physics. 2019;57(11):803–811. Available from: http://nopr.niscpr.res.in/handle/123456789/51724

Copyright

© 2024 Dyama et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.