• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 39, Pages: 3332-3342

Original Article

Sustainable Growth through Garden Waste Pelletization

Received Date:31 May 2023, Accepted Date:15 September 2023, Published Date:17 October 2023

Abstract

Objectives: In metropolitan regions, management of solid wastes continues to be the main challenge. One of them is garden waste management. Garden waste generated in cities is either recycled into fertilizers or dumped on landfills, polluting the land. This study intends to discover sustainable waste management options for garden waste and to achieve a shift in energy from petroleum to renewable sources such as biomass, which can minimize emission of contaminants in the atmosphere. Methods: The pelletization method of managing garden waste was examined in this study. The garden waste including Palm, Jackfruit, and Ashoka leaves was collected separately from the college yard. Pelletization of these leaves was carried out after pretreatment and pulverization. The mechanical, physiochemical, and thermal characteristics of pellets were studied using several analytical techniques such as Thermogravimetric Analysis (TGA), proximate analysis, Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). Findings: The calorific value for pellets made from palm, Jackfruit, and Ashoka leaves was 3414.46 kcal/kg, 3304.02 kcal/kg, and 3833.88 kcal/kg, respectively. These values are reminiscent to those for sub-bituminous coal, lignite, and peat. Additionally, the very low levels of nitrogen and sulphur indicate a lower threat of contaminants in the air. Pellets have an over 90 percent impact resistance and durability , thus signifies resistance to damage and are simple to handle, store, and transport. The results of analyses indicate that pellets made from palm, jackfruit, and Ashoka leaves can be bonded strongly and display the appropriate thermochemical behavior to be used as biofuels. Novelty and applications: The pelleting of specifically Palm, Jackfruit, and Ashoka leaves has not been explored for biofuel use. The pellets generated can be used in boilers, reactors, and other combustion units along with coal to generate revenue and reduce air pollution to some extent.

Keywords: Garden Waste, Sustainable Development, Physiochemical Analysis, Thermogravimetric Analysis, Pellets

References

  1. Jach-Nocoń M, Pełka G, Luboń W, Mirowski T, Nocoń A, Pachytel P. An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types. Energies. 2021;14(15):4465. Available from: https://doi.org/10.3390/en14154465
  2. Vitoussia T, Leyssens G, Trouvé G, Brillard A, Kemajou A, Njeugna E, et al. Analysis of the combustion of pellets made with three Cameroonian biomass in a domestic pellet stove. Fuel. 2020;276:118105. Available from: https://doi.org/10.1016/j.fuel.2020.118105
  3. Riva L, Cardarelli A, Andersen GJ, Buø TV, Barbanera M, Bartocci P, et al. On the self-heating behavior of upgraded biochar pellets blended with pyrolysis oil: Effects of process parameters. Fuel. 2020;278:118395. Available from: https://doi.org/10.1016/j.fuel.2020.118395
  4. Chojnacki J, Zdanowicz A, Ondruška J, Šooš Ľ, Smuga-Kogut M. The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw. Energies. 2021;14(2):405. Available from: https://doi.org/10.3390/en14020405
  5. Zapata S, Gómez M, Bartolomé C, Canalís P, Royo J. Ash Behaviour during Combustion of Agropellets Produced by an Agro-Industry—Part 1: Blends Design and Experimental Tests Results. Energies. 2022;15(4):1479. Available from: https://doi.org/10.3390/en15041479
  6. Kantová NČ, Holubčík M, Čaja A, Trnka J, Jandačka J. Analyses of Pellets Produced from Spruce Sawdust, Spruce Bark, and Pine Cones in Different Proportions. Energies (Basel). 2022;15(8). Available from: https://doi.org/10.3390/en15082725
  7. Petlickaitė R, Jasinskas A, Mieldažys R, Romaneckas K, Praspaliauskas M, Balandaitė J. Investigation of Pressed Solid Biofuel Produced from Multi-Crop Biomass. Sustainability. 2022;14(2):799. Available from: https://doi.org/10.3390/su14020799
  8. Jasinskas A, Kleiza V, Streikus D, Domeika R, Vaiciukevičius E, Gramauskas G, et al. Assessment of Quality Indicators of Pressed Biofuel Produced from Coarse Herbaceous Plants and Determination of the Influence of Moisture on the Properties of Pellets. Sustainability. 2022;14(3):1068. Available from: https://doi.org/10.3390/su14031068
  9. Matli CS, Umre A, Bodkhec SY. Experimental Studies on Pellets Prepared from Different Proportions of Wastes. Journal of Materials and Environmental Science. 2023;2023(2):234–245. Available from: https://www.jmaterenvironsci.com/Document/vol14/vol14_N2/JMES-2023-14017-Matli.pdf
  10. Stolarski MJ, Warmiński K, Krzyżaniak M, Olba–zięty E. Cascaded use of perennial industrial crop biomass: The effect of biomass type and pre-treatment method on pellet properties. Industrial Crops and Products. 2022;185:115104. Available from: https://doi.org/10.1016/j.indcrop.2022.115104
  11. Sermyagina E, Martinez CLM, Nikku M, Vakkilainen E. Spent coffee grounds and tea leaf residues: Characterization, evaluation of thermal reactivity and recovery of high-value compounds. Biomass and Bioenergy. 2021;150:106141. Available from: https://doi.org/10.1016/j.biombioe.2021.106141
  12. Acampora A, Civitarese V, Sperandio G, Rezaei N. Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning. Energies. 2021;14(14):4083. Available from: https://doi.org/10.3390/en14144083
  13. Papilo P, Marimin M, Hambali E, Machfud M, Yani M, Asrol M, et al. Palm oil-based bioenergy sustainability and policy in Indonesia and Malaysia: A systematic review and future agendas. Heliyon. 2022;8(10):e10919. Available from: https://doi.org/10.1016/j.heliyon.2022.e10919
  14. Salem IB, Saleh MB, Iqbal J, Gamal ME, Hameed S. Date palm waste pyrolysis into biochar for carbon dioxide adsorption. Energy Reports. 2021;7:152–159. Available from: https://doi.org/10.1016/j.egyr.2021.06.027
  15. Lee XJ, Lee LY, Hiew BYZ, Gan S, Thangalazhy-Gopakumar S, Ng HK. Valorisation of oil palm wastes into high yield and energy content biochars via slow pyrolysis: Multivariate process optimisation and combustion kinetic studies. Materials Science for Energy Technologies. 2020;3:601–610. Available from: https://doi.org/10.1016/j.mset.2020.06.006
  16. Limhengha S, Mahathaninwong N, Chucheep T, Karrila S, Tipayanon T. Making blends of agarwood waste with empty palm bunches or rubber wood sawdust for pelletized biofuels. BioResources. 2021;16(2):2971–2986. Available from: https://doi.org/10.15376/biores.16.2.2971-2986
  17. Nsubuga D, Banadda N, Kabenge I, Wydra KD. Potential of Jackfruit Waste for Biogas, Briquettes and as a Carbondioxide Sink-A Review. Journal of Sustainable Development. 2020;13(4):60. Available from: https://pdfs.semanticscholar.org/938f/6682c7ece7cec15798828be62902772150d8.pdf
  18. Contreras-Trejo JC, Vega-Nieva DJ, Heya MN, Prieto-Ruíz JA, Nava-Berúmen CA, Carrillo-Parra A. Sintering and Fusibility Risks of Pellet Ash from Different Sources at Different Combustion Temperatures. Energies. 2022;15(14):5026. Available from: https://doi.org/10.3390/en15145026
  19. Strandberg A, Skoglund N, Thyrel M, Lestander TA, Broström M, Backman R. Time-Resolved Study of Silicate Slag Formation during Combustion of Wheat Straw Pellets. Energy & Fuels. 2019;33(3):2308–2318. Available from: https://doi.org/10.1021/acs.energyfuels.8b04294
  20. Liang B, Liu X. Decoupling combustion characteristics of biomass pellets and their mixture with bituminous briquettes. Environmental Technology & Innovation. 2023;32:103275. Available from: https://doi.org/10.1016/j.eti.2023.103275
  21. Portarapillo M, Danzi E, Sanchirico R, Marmo L, Benedetto AD. Energy Recovery from Vinery Waste: Dust Explosion Issues. Applied Sciences. 2021;11(23):11188. Available from: https://doi.org/10.3390/app112311188
  22. Ryšavý J, Horák J, Kuboňová L, Jaroch M, Hopan F, Krpec K, et al. Beech leaves briquettes as fuel for a home combustion unit. WIT Transactions on Ecology and the Environment. 2020;246:75–85. Available from: https://doi.org/10.2495/EPM200081
  23. Senila L, Tenu I, Carlescu P, Scurtu DA, Kovacs E, Senila M, et al. Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource. Agriculture. 2022;12(3):341. Available from: https://doi.org/10.3390/agriculture12030341
  24. Hedayati A, Lindgren R, Skoglund N, Boman C, Kienzl N, Öhman M. Ash Transformation during Single-Pellet Combustion of Agricultural Biomass with a Focus on Potassium and Phosphorus. Energy & Fuels. 2021;35(2):1449–1464. Available from: https://doi.org/10.1021/acs.energyfuels.0c03324

Copyright

© 2023 Udakwar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.