• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 32, Pages: 2548-2559

Original Article

TCC-HDL: A Hybrid Deep Learning Based Traffic Congestion Control System for VANET

Received Date:31 May 2023, Accepted Date:17 July 2023, Published Date:29 August 2023


Objectives: This Study is centered on developing suitable method to reduce road accidents and improve individual traffic management as a part of smart cities development. Methods: A new hybrid deep learning-based model which uses a hybrid deep learning technique (TCC-HDL) is proposed to collect data on traffic patterns and send vehicles along the most efficient routes. The data are collected from kaggle about 8,000 roadside of 12-hour manual counts. From the extracted data, traffic congestion is predicted by new hybrid deep learning approach such as Recurrent capsule networks (CapsRNN), Fuzzy Interface System (FIS) and Optimized Bi-LSTM (O-Bidirectional Long short Memory). The proposed model TCC-HDL has been analyzed in terms of Accuracy, Precision, F-Measure and Recall with the standard algorithms like Bi-LSTM, CapsRNN, GRU, and LSTM. The information comes from the Highway Traffic Crash Dataset. Statistical features, higher-order statistical features, correlation-based features, and database features are used to extract information from the collected data. Findings: The work achieved 0.0102 to 0.1043% improvement in terms of accuracy, 0.0088% to 0.2133% of Precision, 0.039% to 0.2364% of Recall and 0.0056% to 0.083% of F-Measure. Novelty: New hybrid deep learning approach for predicting the situation of heavy traffic CapsRNN algorithm which has the better action recogoization and Bi-LSTM is the long term prediction of data which optimized using RSOA can fused together and it is fed as input to Fuzzy Interface System (FIS).

Keywords: Hybrid Deep Learning; Traffic Congestion Control System; VANET; Database Features


  1. Kothai G, Poovammal E, Dhiman G, Ramana K, Sharma A, Alzain MA, et al. A New Hybrid Deep Learning Algorithm for Prediction of Wide Traffic Congestion in Smart Cities. Wireless Communications and Mobile Computing. 2021;2021:1–13. Available from: https://doi.org/10.1155/2021/5583874
  2. Tang J, Yang L, Liu S, Liu W, Wang M, Wang C, et al. Caps-LSTM: A Novel Hierarchical Encrypted VPN Network Traffic Identification Using CapsNet and LSTM. Science of Cyber Security. 2021;p. 139–153. Available from: https://link.springer.com/chapter/10.1007/978-3-030-89137-4_10
  3. Qureshi KN, Abdullah AH, Kaiwartya O, Iqbal S, Butt RA, Bashir F. A Dynamic Congestion Control Scheme for safety applications in vehicular ad hoc networks. Computers & Electrical Engineering. 2018;72:774–788. Available from: https://doi.org/10.1016/j.compeleceng.2017.12.015
  4. Subramaniam M, Rambabu C, Chandrasekaran G, Kumar NS. A Traffic Density-Based Congestion Control Method for VANETs. Wireless Communications and Mobile Computing. 2022;2022:1–14. Available from: https://doi.org/10.1155/2022/7551535
  5. Ata A, Khan MA, Abbas S, Khan MS, Ahmad G. Adaptive IoT Empowered Smart Road Traffic Congestion Control System Using Supervised Machine Learning Algorithm. The Computer Journal. 2021;64(11):1672–1679. Available from: https://doi.org/10.1016/j.jksuci.2018.10.011
  6. Zheng H, Chang W, Wu J. Traffic flow monitoring systems in smart cities: Coverage and distinguishability among vehicles. Journal of Parallel and Distributed Computing. 2019;127:224–237. Available from: https://doi.org/10.1016/j.jpdc.2018.07.008
  7. Khatri S, Vachhani H, Shah S, Bhatia J, Chaturvedi M, Tanwar S, et al. Machine learning models and techniques for VANET based traffic management: Implementation issues and challenges. Peer-to-Peer Networking and Applications. 2021;14(3):1778–1805.
  8. D'andrea E, Marcelloni F. Detection of traffic congestion and incidents from GPS trace analysis. Expert Systems with Applications. 2017;73:43–56. Available from: https://doi.org/10.1016/j.eswa.2016.12.018
  9. Jobaer S, Zhang Y, Hussain MAI, Ahmed F. UAV-Assisted Hybrid Scheme for Urban Road Safety Based on VANETs. Electronics. 2020;9(9):1499. Available from: https://doi.org/10.3390/electronics9091499
  10. Rashid MM, Datta P. Performance Analysis of Vehicular Ad Hoc Network (VANET) Considering Different Scenarios of a City. International Journal of Computer Applications. 2017;(10) 162. Available from: https://doi.org/10.5120/ijca2017913329
  11. Lakshmanaprabu SK, Shankar K, Rani SS, Abdulhay E, Arunkumar N, Ramirez G, et al. An effect of big data technology with ant colony optimization based routing in vehicular ad hoc networks: Towards smart cities. Journal of Cleaner Production. 2019;217:584–593. Available from: https://doi.org/10.1016/j.jclepro.2019.01.115
  12. Rizwan A, Karras DA, Dighriri M, Kumar J, Dixit E, Jalali A, et al. Simulation of IoT-based Vehicular Ad Hoc Networks (VANETs) for Smart Traffic Management Systems. Wireless Communications and Mobile Computing. 2022;2022:1–11. Available from: https://doi.org/10.1155/2022/3378558
  13. Mohanty A, Mahapatra S, Bhanja U. Traffic congestion detection in a city using clustering techniques in VANETs. Indonesian Journal of Electrical Engineering and Computer Science. 2019;13(3):884. Available from: https://ijeecs.iaescore.com/index.php/IJEECS/article/view/13156
  14. Sharma S, Pandey R. Accident detection, avoidance and prevention using intelligent transportation system. International Journal of Computer Applications. 2018;182(7):10–12. Available from: https://www.ijcaonline.org/archives/volume182/number7/sharma-2018-ijca-917639.pdf
  15. Ravikumar K, Vishvaroobi T. Congestion control in vehicular ad hoc networks (VANET) using meta-heuristic techniques. International Journal of Computer Science Trends and Technology. 2017;5(4):66–72. Available from: http://www.ijcstjournal.org/volume-5/issue-4/IJCST-V5I4P12.pdf
  16. Abdelatif S, Derdour M, Ghoualmi-Zine N, Marzak B. VANET: A novel service for predicting and disseminating vehicle traffic information. International Journal of Communication Systems. 2020;33(6):e4288. Available from: https://doi.org/10.1002/dac.4288
  17. Mallah RA, Quintero A, Farooq B. Distributed Classification of Urban Congestion Using VANET. IEEE Transactions on Intelligent Transportation Systems. 2017;18(9):2435–2442. Available from: https://doi.org/10.48550/arXiv.1904.12685
  18. Choe C, Ahn J, Choi J, Park D, Kim M, Ahn S. A Robust Channel Access Using Cooperative Reinforcement Learning for Congested Vehicular Networks. IEEE Access. 2020;8:135540–135557. Available from: https://doi.org/10.1109/ACCESS.2020.3011568


© 2023 Ahamed et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.