• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 35, Pages: 3695-3706

Original Article

The COVID-19 outbreak and effects on major stock market indices across the globe: A machine learning approach

Received Date:18 July 2020, Accepted Date:21 August 2020, Published Date:05 October 2020


Background/Objectives: The Coronavirus disease in 2019 (COVID-19) was first seen in Wuhan (capital of Hubei, Chain), and has since spread throughout the world, resulting in the World Health Organisation (WHO) declaring the 2019–20 coronavirus a pandemic. Its ongoing spread has resulted in a standstill of the world’s economy, total lockdown in some counties, closedown of business and firms globally. As of 25th Mar 2020, 11:00 am GMT, a total of 491,280 cases were reported globally. The evolution of COVID-19 and its economic impact on the regional financial markets are highly uncertain, which makes it difficult for legislators to formulate a suitable macroeconomic strategy response.Methods: To ascertain the possible economic impact of COVID-19 globally, this study examines the effect of COVID-19 on major stocks indices across the globe. Using a random sampling technique, we selected thirty (30) world stock market indices in different countries infected with COVID-19 from 31st Dec 2019 to 25th Mar 2020. However, not like a high percentage of previous studies that focus on the regional stock market, we examine the information on daily reported COVID-19 cases and stock market fluctuation over thirty stock market indices that houses the stock prices of several countries around the globe. Also, we estimate the monetary loss within the period, project the future surge of this pandemic on the stock market and outline some portfolio allocation strategies to help the investor hedge against investment risk. Findings: The experimental results in this study show that even a controlled outbreak of the COVID-19 can significantly influence the world’s economy in both the short-term and longterm. Our obtained results of COVID-19 associated economic loss echoed in stock prices movements advise that the cost can escalate severely and quickly into global economic stress. Hence, we conclude by outlining some measure that might help investors hedge against such risk using portfolio allocation strategies.

Keywords: Coronavirus; COVID-19; Stock market; stocks price; pandemic; machine-learning; economic impact of COVID-19



  1. Nti IK, Adekoya AF, Weyori BA. A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review. 2020;53(4):3007–3057. Available from: https://dx.doi.org/10.1007/s10462-019-09754-z
  2. Nti IK, Adekoya AF, Weyori BA. A comprehensive evaluation of ensemble learning for stock-market prediction. Journal of Big Data. 2020;7(1). Available from: https://dx.doi.org/10.1186/s40537-020-00299-5
  3. Nti IK, Adekoya AF, Weyori BA. Eflcient Stock-Market Prediction Using Ensemble Support Vector Machine. Open Comput. Sci. 2020;10:153–163. Available from: https://doi.org/10.1515/comp-2020-0199
  4. Nti IK, Adekoya AF, Weyori BA. Predicting Stock Market Price Movement Using Sentiment Analysis: Evidence From Ghana. Applied Computer Systems. 2020;25(1):33–42. Available from: https://dx.doi.org/10.2478/acss-2020-0004
  5. Pimprikar R, Ramachadran S, Senthilkumar K. Use of machine learning algorithms and twitter sentiment analysis for stock market prediction. Int. J. Pure Appl. Math. 2017;115:521–526. Available from: http://www.ijpam.eu
  6. Checkley MS, Higón DA, Alles H. The hasty wisdom of the mob: How market sentiment predicts stock market behavior. Expert Systems with Applications. 2017;77:256–263. Available from: https://dx.doi.org/10.1016/j.eswa.2017.01.029
  7. Nisar MT, Yeung M. Twitter as a tool for forecasting stock market movements: A short-window event study. The Journal of Finance and Data Science. 2018;4(2):101–119. Available from: https://dx.doi.org/10.1016/j.jfds.2017.11.002
  8. Maknickiene N, Lapinskaite I, Maknickas A. Application of ensemble of recurrent neural networks for forecasting of stock market sentiments. Equilibrium. 2018;13(1):7–27. Available from: https://dx.doi.org/10.24136/eq.2018.001
  9. García-Medina A, Sandoval L, Bañuelos EU, Martínez-Argüello AM. Correlations and Flow of Information between The New York Times and Stock Markets, Physica A. 2018. Available from: https://doi.org/10.1016/j.physa.2018.02.154
  10. Xing ZF, Cambria E, Welsch ER. Intelligent Asset Allocation via Market Sentiment Views. IEEE Computational Intelligence Magazine. 2018;13(4):25–34. Available from: https://dx.doi.org/10.1109/mci.2018.2866727
  11. Zhang X, Qu S, Huang J, Fang B, Yu P. Stock Market Prediction via Multi-Source Multiple Instance Learning. IEEE Access. 2018;6:50720–50728. Available from: https://dx.doi.org/10.1109/access.2018.2869735
  12. Agarwal S, Kumar S, Goel U. Stock market response to information diffusion through internet sources: A literature review. International Journal of Information Management. 2019;45:118–131. Available from: https://dx.doi.org/10.1016/j.ijinfomgt.2018.11.002
  13. Vijh M, Chandola D, Tikkiwal VA, Kumar A. Stock Closing Price Prediction using Machine Learning Techniques. Procedia Computer Science. 2020;167:599–606. Available from: https://dx.doi.org/10.1016/j.procs.2020.03.326
  14. Banik S, Khan AFMK, Anwer M. Hybrid Machine Learning Technique for Forecasting Dhaka Stock Market Timing Decisions. Computational Intelligence and Neuroscience. 2014;2014:1–6. Available from: https://dx.doi.org/10.1155/2014/318524
  15. Nti IK, Adekoya AF, Weyori BA. Random Forest Based Feature Selection of Macroeconomic Variables for Stock Market Prediction. American Journal of Applied Sciences. 2019;16(7):200–212. Available from: https://dx.doi.org/10.3844/ajassp.2019.200.212
  16. Buhagiar R, Cortis D, Newall PWS. Why do some soccer bettors lose more money than others? Journal of Behavioral and Experimental Finance. 2018;18:85–93. Available from: https://dx.doi.org/10.1016/j.jbef.2018.01.010
  17. Kim N, Lučivjanská K, Molnár P, Villa R. Google searches and stock market activity: Evidence from Norway. Finance Research Letters. 2019;28:208–220. Available from: https://dx.doi.org/10.1016/j.frl.2018.05.003
  18. Zhong X, Raghib M. Revisiting the use of web search data for stock market movements. Scientific Reports. 2019;9(1):1–8. Available from: https://dx.doi.org/10.1038/s41598-019-50131-1
  19. Fang J, Wei W, Prithwish C, Nathan S, Feng C, Naren R. Tracking Multiple Social Media for Stock Market Event Prediction. Adv. Data Mining. Appl. Theor. Asp. 17th ICDM. 2017;p. 16–30. Available from: https://doi.org/0.1007/978-3-319-62701-4_2
  20. Jiang Y, Zhang Y, Ma C, Wang Q, Xu C, Donovan C, et al. H7N9 not only endanger human health but also hit stock marketing. Adv. Dis. Control Prev. 2017;2. Available from: https://doi.org/10.25196/adcp201711
  21. Mckibbin WJ, Sidorenko AA. Macroeconomic Consequences of Pandemic Influenza, Crawford Sch. Public Policy. Crawford Sch. Public Policy. 2006.
  22. Peckham R. Economies of contagion: financial crisis and pandemic. Economy and Society. 2013;42(2):226–248. Available from: https://dx.doi.org/10.1080/03085147.2012.718626
  23. Rodriguez-Morales AJ, Gallego V, Escalera-Antezana JP, Méndez CA, Zambrano IL, Franco-Paredes C, et al. COVID-19 in Latin America: The implications of the first confirmed case in Brazil. Travel Medicine and Infectious Disease. 2020;35:101613. Available from: https://dx.doi.org/10.1016/j.tmaid.2020.101613
  24. Chen S, Yang J, Yang W, Wang C, Bärnighausen T. COVID-19 control in China during mass population movements at New Year. The Lancet. 2020;395(10226):764–766. Available from: https://dx.doi.org/10.1016/s0140-6736(20)30421-9
  25. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med.. 2020;p. 19–20. Available from: https://doi.org/10.1056/nejmoa2001316
  26. Gallego V, Nishiura H, Sah R, Rodriguez-Morales AJ. The COVID-19 outbreak and implications for the Tokyo 2020 Summer Olympic Games. Travel Medicine and Infectious Disease. 2020;34:101604. Available from: https://dx.doi.org/10.1016/j.tmaid.2020.101604
  27. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;2600:19–21. Available from: https://doi.org/10.1016/S2213-2600(20)30076-X
  28. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine. 2020;27(2):1–4. Available from: https://dx.doi.org/10.1093/jtm/taaa021
  29. Gopinath G. RB, BWdM., eds. Mitigating the COVID Economic Crisis: Act Fast and Do Whatever It Takes. (pp. 1-227) CEPR Press. 2020.
  30. Phan DHB, Narayan PK. Country Responses and the Reaction of the Stock Market to COVID-19—a Preliminary Exposition. Emerging Markets Finance and Trade. 2020;56(10):2138–2150. Available from: https://dx.doi.org/10.1080/1540496x.2020.1784719
  31. Ashraf BN. Stock markets’ reaction to COVID-19: Cases or fatalities? Res. Int. Bus. Financ. 2020;54:101249. Available from: https://doi.org/10.1016/j.ribaf.2020.101249
  32. Salisu AA, Ebuh UG, Usman N. Revisiting oil-stock nexus during COVID-19 pandemic: Some preliminary results. International Review of Economics & Finance. 2020;69:280–294. Available from: https://dx.doi.org/10.1016/j.iref.2020.06.023
  33. Al-Awadhi AM, Alsaifi K, Al-Awadhi A, Alhammadi S. Death and contagious infectious diseases: Impact of the COVID-19 virus on stock market returns. Journal of Behavioral and Experimental Finance. 2020;27:100326. Available from: https://dx.doi.org/10.1016/j.jbef.2020.100326
  34. Topcu M, Gulal OS. The impact of COVID-19 on emerging stock markets. Financ. Res. Lett. 2020. Available from: https://doi.org/10.1016/j.frl.2020.101691
  35. Conlon T, Corbet S, McGee JR. Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic. Research in International Business and Finance. 2020;54:101248. Available from: https://dx.doi.org/10.1016/j.ribaf.2020.101248
  36. Mazur M, Dang M, Vega M. COVID-19 and the march 2020 stock market crash. Evidence from S&P1500. Finance Research Letters. 2020;p. 101690. Available from: https://dx.doi.org/10.1016/j.frl.2020.101690
  37. Akhtaruzzaman M, Boubaker S, Sensoy A. Financial contagion during COVID–19 crisis. Finance Research Letters. 2020;p. 101604. Available from: https://dx.doi.org/10.1016/j.frl.2020.101604
  38. Salisu AA, Vo XV. Predicting stock returns in the presence of COVID-19 pandemic: The role of health news. International Review of Financial Analysis. 2020;71:101546. Available from: https://dx.doi.org/10.1016/j.irfa.2020.101546
  39. Baker S, Bloom N, Davis S, Kost K, Sammon M, Viratyosin T. The Unprecedented Stock Market Impact of COVID-19. Natl. Bur. Econ. Res. 2020. Available from: https://doi.org/10.3386/w26945
  40. Zhang D, Hu M, Ji Q. Financial markets under the global pandemic of COVID-19. Finance Research Letters. 2020;36. Available from: https://dx.doi.org/10.1016/j.frl.2020.101528
  41. Akanbi OA, Amiri IS, Fazeldehkordi E. A Machine-Learning Approach to Phishing Detection and Defense. 2014. Available from: https://doi.org/10.1016/c2014-0-03762-8
  42. Mckibbin W, Fernando R. The Global Macroeconomic Impacts of COVID-19: Seven Scenarios. Cent. Appl. Macroecon. Anal. 2020;45. Available from: https://ssrn.com/abstract=3547729


© 2020 Adekoya & KofiNti.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.