• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 48, Pages: 2707-2715

Original Article

The electrochemical activity of Titanium dioxide nanostructures using the Ocimum tenuiflorum Plant Leaves Extract

Received Date:27 October 2022, Accepted Date:28 November 2022, Published Date:24 December 2022


Objectives: To investigate the electrochemical performance of TiO2 (Titanium dioxide) nanoparticles prepared from Ocimum tenuiflorum Plant (OTP) Leaves extract. Methods : cost-effective and eco-friendly green synthesis approach is used to synthesize the TiO2 nanoparticles. XRD (X-ray diffraction) and FESEM (Field Emission Scanning Electron Microscopy) techniques are used to analyse microstructural details. Raman and EDX (Energy Dispersive X-ray spectroscopy) are used to analyse the phase and the chemical composition of the synthesized TiO2 nanoparticles. The nature of chemical bonding as well as the functional groups that the sample contains is identified by using FITR (Fourier Transform Infrared spectroscopy) investigation. The optical band gap of the prepared nanoparticles is estimated by UV-Vis spectroscopic analysis. Finally, Cyclic Voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) are used to investigate the electrochemical performance of the produced TiO2 nanoparticles. Findings: The XRD data exhibited that the prepared TiO2 nanoparticles are in a tetragonal structure with an anatase phase and have a crystallite size of 18.6 nm. FESEM images of the TiO2 nanoparticles confirm the smooth surface morphology of spherical grains having an average grain size of 92 nm. The formation of the anatase phase is confirmed by the Raman spectroscopic analysis. The Ti-O-Ti bonds are identified in the sample through the FTIR absorption spectra. The optical band gap of green TiO2 nanoparticles is found to be 3.07 eV and indexed to the anatase phase. Moreover, the better electrochemical performance of the prepared TiO2 nanoparticles is identified from both CV and CP studies in Na2SO4 aqueous electrolyte. At last, the capacitive retention attains up to 65% even after 5000 cycles for the sample prepared from OTP. Novelty: A significant component of this study is the creation of the 3D nanostructured morphology of TiO2 nanoparticles using the green synthesis method which followsthe green chemistry principles. This type of research provides assurance for the protection of rights of the future generations and ecosystems. This type of 3D nanostructure demonstrates superior performance as a supercapacitor electrode, photocatalyst, antibacterial agent, UV-resistant material and solarpowered H2 fuel producer.

Keywords: TiO 2 nanoparticles; Green synthesis; Ocimum tenuiflorum Plant (OTP); Optical band gap; Specific capacitance


  1. Qamar N, Malik TN, Qamar F, Ali M, Naeem M. Energy hub: modeling, control, and optimization. Renewable Energy Systems. 2021;p. 339–362. Available from: https://doi.org/10.1016/B978-0-12-820004-9.00018-8
  2. Kumar A, Rathore HK, Sarkar D, Shukla A. Nanoarchitectured transition metal oxides and their composites for supercapacitors. Electrochemical Science Advances. 2022;2(6):1–42. Available from: https://doi.org/10.1002/elsa.202100187
  3. Reddy NK, Dadamiah P, Nagamalleswari P, Thiagarajan D, K, Prasanth V, et al. Electrochemical Activity of TiO2 Nanoparticles in NaOH Electrolyte via Green Synthesis Using Calotropis gigantea Plant Leaf Extract. Indian Journal of Science and Technology. 2021;14:2766–2772. Available from: https://doi.org/10.17485/IJST/v14i34.1424
  4. Reddy NK, Dadamiah P, Ganesh P, Nagamalleswari V, Thyagarajan D, K, et al. High electrochemical activity of 3D flower like nanostructured TiO2 obtained by green synthesis. Applied Surface Science. 2021;61:50092. Available from: https://doi.org/10.1016/j.apsusc.2021.150092
  5. Adeleye OA, Bamiro OA, Bakre LG, Odeleye FO, Adebowale MN, Okunye OL, et al. Medicinal Plants with Potential Inhibitory Bioactive Compounds against Coronaviruses. Advanced Pharmaceutical Bulletin. 2021;12(1):7–16. Available from: https://doi.org/10.34172/apb.2022.003
  6. Rajeshkumar S, Santhoshkumar J, Jule LT, Ramaswamy K. Phytosynthesis of Titanium Dioxide Nanoparticles Using King of Bitter Andrographis paniculata and Its Embryonic Toxicology Evaluation and Biomedical Potential. Bioinorganic Chemistry and Applications. 2021;2021:1–11. Available from: https://doi.org/10.1155/2021/6267634
  7. Sivaraj M, Sudhakar S, Arivanandhan M, Ganesan S, Jayavel R. Study on Photo-Catalytic and Antimicrobial Activity of Green Synthesized TiO2 Nanoparticles Coated Vitrified Tiles. Journal of Nanoscience and Technology. 2019;5:836–839. Available from: https://doi.org/10.30799/jnst.275.19050504
  8. Qarn AL, Alomair F, Mohamed NA. Environment-Friendly Nanoporous Titanium Dioxide with Enhanced Photocatalytic Activity. Catalysts. 2019;9:799. Available from: https://doi.org/10.3390/catal9100799
  9. Sharma S, Kumar K, Thakur N, Chauhan MS. Ocimum tenuiflorum leaf extract as a green mediator for the synthesis of ZnO nanocapsules inactivating bacterial pathogens. Chemical Papers. 2020;74(10):3431–3444. Available from: https://doi.org/10.1007/s11696-020-01177-3
  10. Reddy NK, Dadamiah P, Ganesh P, Nagamalleswari V, Thyagarajan D, K. Structural, optical and electrochemical properties of TiO2 nanoparticles synthesized using medicinal plant leaf extract. Ceramics International. 2021;45:16251–16260. Available from: https://doi.org/10.1016/j.ceramint.2019.05.147
  11. Scarpelli F, Mastropietro TF, Poerio T, Godbert N. Mesoporous TiO2 Thin Films: State of the Art. 2017. Available from: https://doi.org/10.5772/intechopen.74244
  12. Perevedentseva E, Lin Y, Karmenyan C, Wu KT, Lugovtsov A, Shirshin E, et al. Raman Spectroscopic Study of TiO2 Nanoparticles Effects on the Hemoglobin State in Individual Red Blood Cells. Materials. 2021;14(20):5920. Available from: https://doi.org/10.3390/ma14205920
  13. Uddin MJ, Cesano F, Chowdhury AR, Trad T, Cravanzola S, Martra G, et al. Surface Structure and Phase Composition of TiO2 P25 Particles After Thermal Treatments and HF Etching. Frontiers in Materials. 2020;7:192. Available from: https://doi.org/10.3389/fmats.2020.00192
  14. Maksoud A, Fahim MI, Shalan RA, AE. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters. 2021;19:375–439. Available from: https://doi.org/10.1007/s10311-020-01075-w
  15. Gocer S, Zaimoglu Z, Cirik K. Synthesis of Titanium Dioxide (TiO2) Journal of Engineering. 2020;23:219–226. Available from: https://doi.org/10.17780/ksujes.780560
  16. Chen J, Peng J, He A, Gao L, Omran M, Chen G. Investigation on the decomposition of titanium slag using sodium carbonate for preparing rutile TiO2. Materials Chemistry and Physics. 2022;290:126626. Available from: https://doi.org/10.1016/j.matchemphys.2022.126626
  17. Dadamiah P, Sasikumar MV, Reddy NK, Hussain P, OM. High electrochemical performance of spinel Mn3O4 over Co3O4 nanocrystals. Journal of molecular structure. 2021;1241:130619. Available from: https://doi.org/10.1016/j.molstruc.2021.130619
  18. Sreenivasa KG, Maseed H, Dadamiah P, Shaik AA, Es. TiO2 nanorods decorated on RGO sheet for an excellent energy storage performance. International Journal of Hydrogen Energy. 2022;47(35):15571–15582. Available from: https://doi.org/10.1016/j.ijhydene.2022.03.071
  19. Li Z, Qiong S, Chunyan W, Xianjun L, Xiujuan J, Jian G. The Electrode Materials of Supercapacitor Based on TiO2 Nanorod/MnO2 Ultrathin Nanosheet Core/Shell Arrays. Journal of Nanomaterials. 2020;11:6642236. Available from: https://doi.org/10.1155/2020/6642236
  20. Yan Z, Xu L, Shuquan H, Bao J, Qiu J, Lian J, et al. Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors. Journal of Alloys and Compounds. 2017;702:178–185. Available from: https://doi.org/10.1016/j.jallcom.2017.01.125


© 2022 Reddy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.