• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 36, Pages: 2938-2951

Original Article

The Electrokinetic Stabilization (EKS) Green Approach Towards Improving the Geotechnical Properties of the Gulf Sabkha Soil at Rabigh, Saudi Arabia

Received Date:03 June 2023, Accepted Date:20 August 2023, Published Date:27 September 2023


Objectives: Sabkha soil is widely formed in the Arabian Gulf in the Kingdom of Saudia Arabia, particularly along the coastline. Over the past 25 years, numerous studies have been conducted to understand and characterize sabkha soil and increase its strength and durability. To enhance the geotechnical properties of Sabkha soil using an environmentally friendly electrokinetic stabilization method. From a geotechnical perspective, the construction process heavily depends on improving weak soil strength, durability, and treatment cost. The presence of water, high salinity, low shear strength, and low specific gravity are the soft geotechnical features that need to be enhanced before any construction on sabkha soil. Methods/Analysis: The electrokinetic stabilization method was applied to extract salty particles and enhance the geotechnical properties of sabkha soil. The voltage gradient of 40 V was applied for 1, 3, and 7 days using stainless steel electrodes. Findings: The result showed an outstanding improvement of sabkha soil geotechnical properties where the shear strength was increased from 116 to 165, 230, and 360 kPa for Rabigh I (RI), 122 to 155, 254, and 371 kPa for Rabigh II (RII), and for Rabigh III (RIII), the shear strength was improved up to 405 kPa. The moisture content decreased from 34.5 to 16.8% for RI, 35.2 to 15.9% for RII, and 37.5 to 14.7% for RIII. Novelty and applications: Experimental results demonstrated that all parameters were improved massively by increasing the voltage gradient and operational time. This technique is highly recommended to strengthen weak soil and improve geotechnical properties.

Keywords: Sabkha soil; geotechnical properties; electrokinetic stabilization


  1. Hamid W, Alnuaim A. Sustainable Geopolymerization Approach to Stabilize Sabkha Soil. Journal of Materials Research and Technology. 2023;24: 9030–9044. Available from: https://doi.org/10.1016/j.jmrt.2023.05.149
  2. Sadek LE, Bahloul KM. Numerical Simulation of Strip Footing Behavior on Reinforced Sabkha Soil. SVU-International Journal of Engineering Sciences and Applications. 2023;4(2):36–46. Available from: https://doi.org/10.21608/SVUSRC.2023.186565.1094
  3. Arifuzzaman M, Habib MA, Al-Turki MK, Khan MI, Ali MM. Improvement and characterization of sabkha soil of Saudi Arabia: A review. Jurnal Teknologi. 2016;78(6):1–11. Available from: https://doi.org/10.11113/jt.v78.5352
  4. Eid EM, Arshad M, Alrumman SA, Al-Bakre DA, Ahmed MT, Almahasheer H, et al. Evaluation of Soil Organic Carbon Stock in Coastal Sabkhas under Different Vegetation Covers. Journal of Marine Science and Engineering. 2022;10(9):1–17. Available from: https://doi.org/10.3390/jmse10091234
  5. Alnuaim AM, Alsanabani NM, Alshenawy AO, Al-Amoudi OSB. Vibrating Behavior of Foundations Resting on Salt-Encrusted Flat (Sabkha) Soil Improved Using Cement. Arabian Journal for Science and Engineering. 2023;48:5243–5266. Available from: https://doi.org/10.1007/s13369-022-07382-4
  6. Hird R, Matteo ND, Gulerce U, Babu VLS, Rafiq A. Geohazards of Saudi Arabia. Journal of Maps. 2019;15(2):626–634. Available from: https://doi.org/10.1080/17445647.2019.1642245
  7. Rasol MA, Pérez-Gracia V, Fernandes FM, Pais JC, Solla M, Santos C. NDT assessment of rigid pavement damages with ground penetrating radar: laboratory and field tests. International Journal of Pavement Engineering. 2022;23(3):900–915. Available from: https://doi.org/10.1080/10298436.2020.1778692
  8. Fernandes FM, Fernandes A, Pais J. Assessment of the density and moisture content of asphalt mixtures of road pavements. Construction and Building Materials. 2017;154:1216–1225. Available from: https://doi.org/10.1016/j.conbuildmat.2017.06.119
  9. Mubaraki M. Improving Road Construction on Sabkha Soil by Using Lime Stabilization and Groundwater Table Monitoring. Journal of Testing and Evaluation. 2019;47(3):1935–1948. Available from: https://doi.org/10.1520/JTE20180273
  10. Shuja D, Rollakanti CR, Poloju KK, Joe A. An experimental investigation on -stabilization of sabkha soils with cement and Cement Kiln Dust (CKD) in Sultanate of Oman. Materials Today: Proceedings. 2022;65(Part 2):1033–1039. Available from: https://doi.org/10.1016/j.matpr.2022.04.127
  11. Ali KM, Malik I, Ibrahim A. Geotechnical properties of Sabkha Soil in the southern part of Al-Khobar city, KSA. International Journal of Engineering Research and Applications. 2015;5(6):24–29. Available from: https://www.ijera.com/papers/Vol5_issue6/Part%20-%203/E56032429.pdf
  12. Aqeel A. Investigation of expansive soils in Obhor Sabkha, Jeddah-Saudi Arabia. Arabian Journal of Geosciences. 2016;9(314):1–14. Available from: https://doi.org/10.1007/s12517-016-2341-x
  13. Elsawy MBD, Lakhouit A. Geotechnical Behaviour of Sandy Sabkha Soils Based on Experimental and Numerical Investigations. Indian Geotechnical Journal. 2022;52:97–112. Available from: https://doi.org/10.1007/s40098-021-00555-2
  14. Wahab A, Embong Z, Naseem AA, Madun A, Zainorabidin A, Kumar V. The Effect of Electrokinetic Stabilization (EKS) on Peat Soil Properties at Parit Botak area, Batu Pahat, Johor, Malaysia. Indian Journal of Science and Technology. 2018;11(44):1–12. Available from: https://doi.org/10.17485/ijst/2018/v11i44/131658
  15. Wahab A, Embong Z, Tajudin SAA, Zaman QU, Ullah H. The electrokinetic stabilization (EKS) impact on soft soil (peat) stability towards its physical, mechanical and dynamic properties at Johor state, Peninsular Malaysia. Physics and Chemistry of the Earth, Parts A/B/C. 2021;123:103028. Available from: https://doi.org/10.1016/j.pce.2021.103028
  16. Darab B, Naeini SA, Nozari MA. Effect of electrokinetic method on improvement of loose sand by colloidal silica. Arabian Journal of Geosciences. 2022;15(302):1–9. Available from: https://doi.org/10.1007/s12517-022-09558-6
  17. Hussain A, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, et al. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air – A review. Chemosphere. 2022;289:133252. Available from: https://doi.org/10.1016/j.chemosphere.2021.133252
  18. Ossai IC, Ahmed A, Hassan A, Hamid FS. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation. 2020;17:100526. Available from: https://doi.org/10.1016/j.eti.2019.100526
  19. Wahab A, Embong Z, Hasan M, Musa H, Zaman QU, Ullah H. Peat Soil Engineering And Mechanical Properties Improvement Under The Effect Of EKS Technique At Parit Kuari, Batu Pahat, Johor, West Malaysia. Bulletin Of The Geological Society Of Malaysia. 2020;70(1):133–138. Available from: https://doi.org/10.7186/bgsm70202011
  20. Li Y, Shao M, Huang M, Sang W, Zheng S, Jiang N, et al. Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier. Chemosphere. 2022;286(Part 1):131470. Available from: https://doi.org/10.1016/j.chemosphere.2021.131470
  21. Liu J, Huang Y, Li H, Duan H. Recent advances in removal techniques of vanadium from water: A comprehensive review. Chemosphere. 2022;287(Part 1):132021. Available from: https://doi.org/10.1016/j.chemosphere.2021.132021
  22. Wen D, Fu R, Li Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review. Journal of Hazardous Materials. 2021;401:123345. Available from: https://doi.org/10.1016/j.jhazmat.2020.123345
  23. Andrade DC, Đolić MB, Martínez-Huitle CA, Santos EVd, Silva TFCV, Vilar VJP. Coupling electrokinetic with a cork-based permeable reactive barrier to prevent groundwater pollution: A case study on hexavalent chromium-contaminated soil. Electrochimica Acta. 2022;429:1–17. Available from: https://doi.org/10.1016/j.electacta.2022.140936
  24. Al-Homidy AA, Dahim MH, Aal AKAE. Improvement of geotechnical properties of sabkha soil utilizing cement kiln dust. Journal of Rock Mechanics and Geotechnical Engineering. 2017;9(4):749–760. Available from: https://doi.org/10.1016/j.jrmge.2016.11.012
  25. Hussain M, Al-Shaibani A, Al-Ramadan K, Wood WW. Geochemistry and isotopic analysis of brines in the coastal sabkhas, Eastern region, Kingdom of Saudi Arabia. Journal of Arid Environments. 2020;178:104142. Available from: https://doi.org/10.1016/j.jaridenv.2020.104142
  26. Alshenawy AO, Hamid WM, Alnuaim AM. A review on the characteristics of sabkha soils in the Arabian Gulf Region. Arabian Journal of Geosciences. 2021;14(2018):1–15. Available from: https://doi.org/10.1007/s12517-021-08275-w
  27. Mohamedzein YEA, Al-Rawas AA. Cement-Stabilization of Sabkha Soils from Al-Auzayba, Sultanate of Oman. Geotechnical and Geological Engineering. 2011;29:999–1008. Available from: https://doi.org/10.1007/s10706-011-9432-y
  28. Al-Amoudi OSB. Chemical stabilization of sabkha soils at high moisture contents. Engineering Geology. 1994;36(3-4):279–291. Available from: https://doi.org/10.1016/0013-7952(94)90009-4


© 2023 Babar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.