• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 19, Pages: 927-937

Original Article

Thermal Behaviour of Tamarind Seed Kernel Based Bio-Composites Intended for Thermal Insulation

Received Date:10 January 2022, Accepted Date:27 March 2022, Published Date:25 May 2022


Objective: Current research is aimed to emphasize the use of bio-based composites in the form of thermal insulation, achieving complete degradability. Low density bio-composites have gained moderate importance as its development is in its primitive stage because of the processing and preparation issues. Methods: A preliminary investigation is carried out based on the results of the selected reinforcements Eggshell (ES), Groundnut Pod (GP), and Paper Cellulose (PC) with Tamarind Seed Gum (TSG) binder to justify the thermal behaviour in terms of thermal conductivity, thermal resistivity and diffusivity of various compositions; also conducted morphological characterization to justify molecular level bonding phenomenon. The fungal development on the composites is predominant and is addressed by use of additives, the additive samples are tested and analysed for change in properties. Findings: The preliminary experimental results motivated the use of PC reinforcement for further investigation. The samples of various compositions are synthesized for further testing. The average ‘k’ obtained from ES, GP, and PC based composites is 0.13, 0.083 & 0.052 W/mk respectively. The PC based composites depicted promising results in contrast with the commercially used insulation materials. Novelty: Considering the harmful effect of commercially used non-degradable insulation materials, an attempt is made in this research to synthesize a new completely biodegradable composite material for thermal insulation.

Keywords: Morphology; thermal properties; theoretical model; biocomposites; density


  1. Al-Mudhaffer AF, Saleh SK, Kadhum GI. The role of sustainable materials in reducing building temperature. Materials Today: Proceedings. 2021. Available from: https://doi.org/10.1016/j.matpr.2021.08.249
  2. Dickson T, Pavía S. Energy performance, environmental impact and cost of a range of insulation materials. Renewable and Sustainable Energy Reviews. 2021;140(110752):110752. Available from: https://doi.org/10.1016/j.rser.2021.110752
  3. Hamdani MMA, Bekkouche SMA, Benouaz TK, Cherier MK, Belarbi R. Interior Insulation of Walls Exposed by Polystyrene in South Algeria. Indian Journal of Science and Technology. 2018;11(7):1–6. doi: 10.17485/ijst/2018/v11i7/120903
  4. Oladele TIO, Omotosho AF, Adediran A. Polymer-Based Composites: An Indispensable Material for Present and Future Applications. International Journal of Polymer Science. 2020. Available from: https://doi.org/10.1155/2020/8834518
  5. Kushal G, Ambli, Bhimanagoud M, Dodamani JA, Vanarotti MB. Heterogeneous composites for low and medium temperature thermal insulation: A review. Energy & Buildings. 2019;199:455–460. Available from: https://doi.org/10.1016/j.enbuild.2019.07.024
  6. Anjali G, Sharma V, Jain S. Nutritional Properties of Tamarind (Tamarindus Indica) Kernel Flour. International Journal of Current Microbiology and Applied Sciences. 2020;9(5):1359–1364. Available from: https://doi.org/10.20546/ijcmas.2020.905.153
  7. Yadav A, Vishwakarma RK, Mishra SK, Shukla AK. Isolation and Characterization of Tamarind Seed Gum as Pharmaceutical Excipient. International Journal of Health and Clinical Research. Res. 2020:49–57.
  8. Pasarin D, Rovinaru C. Separation Methods of the Eggshell Membranes from Eggshell. Priorities of Chemistry for a Sustainable Development-PRIOCHEM. 2019;29:122. Available from: https://doi.org/10.3390/proceedings2019029122
  9. Duc PPA, Dharanipriya B, Velmurugan MK, Shanmugavadivu. Groundnut shell -a beneficial bio-waste. Biocatalysis and Agricultural Biotechnology. 2019;20:101206. Available from: https://doi.org/10.1016/j.bcab.2019.101206
  10. Musekiwa P, Moyo LB, Mamvura TA, Danha G, Simate GS, Hlabangana N. Optimization of pulp production from groundnut shells using chemical pulping at low temperatures. Heliyon. 2020;6(6):e04184. Available from: https://doi.org/10.1016/j.heliyon.2020.e04184
  11. Alaneme KK, Bodunrin MO, Adebimpe A. Awe, Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. Journal of King Saud University - Engineering Sciences. 2018;30(1):96–103. Available from: https://doi.org/10.1016/j.jksues.2016.01.001
  12. Kwon YC, Yarbrough DW. Cellulose Insulation for Use as Building Insulation in Korea. International Conference on Advanced Materials Science and Civil Engineering. 2017;70. doi: 10.2991/amsce-17.2017.18
  13. Gupta P, Singh B, Agrawal AK, Maji PK. Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Materials & Design. 2018;158:224–236. Available from: https://doi.org/10.1016/j.matdes.2018.08.031
  14. Aquino FDCR, Carlos F, Padua H, Tayactac. Adrienne Hera Zulueta, Erison Roque, and Nuna Almanzor. MATEC Web of Conferences. 2019;268:4013. Available from: https://doi.org/10.1051/matecconf/201926804013
  15. Venkata SP, Bitra S, Banu P, Ramakrishna G, Narender AR, Womac. Moisture dependent thermal properties of peanut pods, kernels, and shells. bio systems engineering. 2010;106:0–3. doi: 10.1016/j.biosystemseng.2010.05.016
  16. Uetani K, Hatori K. Thermal conductivity analysis and applications of nanocellulose materials. Science and Technology of Advanced Materials. 2017;18(1):877–892. doi: 10.1080/14686996.2017.1390692
  17. Ninikas K, Mitani A, Koutsianitis D, Ntalos G, Taghiyari HR, Papadopoulos AN. Thermal and Mechanical Properties of Green Insulation Composites Made from Cannabis and Bark Residues. Journal of Composites Science. 5(5):132. Available from: https://doi.org/10.3390/jcs5050132
  18. Liu ZTW, Wang GZ, Li G, Shi X, Zhao. Mechanical properties and thermal conductivity of lightweight thermal insulation composites. The 7th Global Conference on Materials Science and Engineering. 2019;474:12038. doi: 10.1088/1757-899X/474/1/012038
  19. Mohapatra RC, Mishra A, Bhushan B, Choudhury. Experimental Study on Thermal Conductivity of Teak Wood Dust Reinforced Epoxy Composite Using Lee’s Apparatus Method. International Journal of Mechanical Engineering and Applications. 2014;2(6):98. doi: 10.11648/j.ijmea.20140206.13


© 2022 Ambli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.