• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 40, Pages: 2047-2055

Original Article

Window Based Min-Max Feature Extraction for Visual Object Tracking

Received Date:06 July 2022, Accepted Date:12 September 2022, Published Date:18 October 2022


Background/Objectives: Visual object tracking is considered as difficult problem and becomes more challenging because of the various environmental conditions. In order to achieve the efficient result in the area of visual tracking, feature extraction will play the important role. This study demonstrates the Min-max feature extraction method to improve the tracker robustness in the area of visual tracking. Methods: The proposed min-max features along with existing Histogram of Oriented Gradient (HOG), and Convolution Neural Network (CNN) features are given to the Spatial Temporal Regularized Correlation Filter (STRCF) to find the new position of the target and it is successfully solved through Alternative Direction Method of Multipliers (ADMM). By employing both Spatial and temporal regularization methods, without much compromise in the efficiency, the boundary effect is handled. The min-max feature will extract the object’s window-based features as foreground and background. The foreground consists of higher color values than the background. As compared to the Color Names (CN) proposed minmax feature method gives accurate features to identify the objects in a video. In order to present the performance, the method is tested on the OTB dataset image sequences and compared with the state-of-the-art tracker and achieved the promising results for all of tested videos. Findings: Our method, using Minmax feature, gives Mean OP and FPS 61.44% &18.27 respectively, which shows improvement in the tracking accuracy along with the computational speed as compared to CN feature.

Keywords: MinMax feature; CNN; Histogram of Oriented Gradient; Occlusion; Visual tracking; Video surveillance


  1. Lu X, Ma C, Ni B, Yang X. Adaptive Region Proposal With Channel Regularization for Robust Object Tracking. IEEE Transactions on Circuits and Systems for Video Technology. 2021;31(4):1268–1282.
  2. Ondrasovic M, Tarabek P. Siamese Visual Object Tracking: A Survey. IEEE Access. 2021;9:110149–110172.
  3. Kumar A, Walia GS, Sharma K. Recent trends in multicue based visual tracking: A review. Expert Systems with Applications. 2020;162:113711.
  4. Kumar A, Walia GS, Sharma K. A novel approach for multi-cue feature fusion for robust object tracking. Applied Intelligence. 2020;50(10):3201–3218.
  5. Zhu XF, Wu XJ, Xu T, Feng ZH, Kittler J. Robust Visual Object Tracking Via Adaptive Attribute-Aware Discriminative Correlation Filters. IEEE Transactions on Multimedia. 2022;24:301–312.
  6. Yang H, Wang J, Miao Y, Yang Y, Zhao Z, Wang Z, et al. Combining Spatio-Temporal Context and Kalman Filtering for Visual Tracking. Mathematics. 2019;7(11):1059. Available from: https://doi.org/10.3390/math7111059
  7. Fang S, Ma Y, Li Z, Zhang B. A visual tracking algorithm via confidence-based multi-feature correlation filtering. Multimedia Tools and Applications. 2021;80(16):23963–23982. Available from: https://doi.org/10.1007/s11042-021-10804-4
  8. Zhu H, Han Y, Wang Y, Yuan G. Hybrid Cascade Filter With Complementary Features for Visual Tracking. IEEE Signal Processing Letters. 2021;28:86–90. Available from: https://doi.org/10.1109/LSP.2020.3039933
  9. Xu T, Feng ZH, Wu XJ, Kittler J. Joint group feature selection and discriminative filter learning for robust visual object tracking. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019;p. 7950–7960. Available from: https://doi.org/10.48550/arXiv.1907.13242
  10. Huang Y, Zhao Z, Wu B, Mei Z, Cui Z, Gao G. Visual object tracking with discriminative correlation filtering and hybrid color feature. Multimedia Tools and Applications. 2019;78(24):34725–34744. Available from: https://doi.org/10.1007/s11042-019-07901-w
  11. Kumar A, Walia GS, Sharma K. Real-time visual tracking via multi-cue based adaptive particle filter framework. Multimedia Tools and Applications. 2020;79(29-30):20639–20663. Available from: https://doi.org/10.1007/s11042-020-08655-6
  12. Wang Y, Luo X, Ding L, Wu J, Fu S. Robust visual tracking via a hybrid correlation filter. Multimedia Tools and Applications. 2019;78(22):31633–31648. Available from: https://doi.org/10.1007/s11042-019-07851-3
  13. Hu G, Dixit C, Qi G. Discriminative Shape Feature Pooling in Deep Neural Networks. Journal of Imaging. 2022;8(5):118. Available from: https://doi.org/10.3390/jimaging8050118
  14. Liu M, Ma J, Zheng Q, Liu Y, Shi G. 3D Object Detection Based on Attention and Multi-Scale Feature Fusion. Sensors. 2022;22(10):3935. Available from: https://doi.org/10.3390/s22103935
  15. Zhao J, Ji S, Cai Z, Zeng Y, Wang Y. Moving Object Detection and Tracking by Event Frame from Neuromorphic Vision Sensors. Biomimetics. 2022;7(1):31. Available from: https://doi.org/10.3390/biomimetics7010031
  16. Qi G, Zhang Y, Wang K, Mazur N, Liu Y, Malaviya D. Small Object Detection Method Based on Adaptive Spatial Parallel Convolution and Fast Multi-Scale Fusion. Remote Sensing. 2022;14(2):420. Available from: https://doi.org/10.3390/rs14020420
  17. Basavaraju H, Aradhya VM, Guru D. A novel arbitrary-oriented multilingual text detection in images/video. Information and decision sciences. 2018;701:519–529. Available from: https://doi.org/10.1007/978-981-10-7563-6_54
  18. Li F, Tian C, Zuo W, Zhang L, Yang MH. Learning spatial-temporal regularized correlation filters for visual tracking. Proceedings of the IEEE conference on computer vision and pattern recognition. 2018;p. 4904–4913. Available from: https://doi.org/10.48550/arXiv.1803.08679
  19. Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y. Online passive aggressive algorithms. 2006. Available from: https://www.jmlr.org/papers/volume7/crammer06a/crammer06a.pdf
  20. Petersen KB, Pedersen MS. The matrix cookbook. Technical University of Denmark. 2008;7(15):510. Available from: https://ece.uwaterloo.ca/~ece602/MISC/matrixcookbook.pdf
  21. Wu MY, Lim J, Yang MH. Object tracking benchmark. 2015;37:1834–1848. Available from: https://doi.org/10.1109/TPAMI.2014.2388226


© 2022 Banu & Sidram. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.