• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 46, Pages: 3370-3395

Review Article

Zinc Oxide Nanostructures in the Textile Industry

Received Date:09 June 2021, Accepted Date:02 November 2021, Published Date:24 December 2021


Background: The zinc oxide nanostructures have been using in the textile industry since the early 2000s. However, the efficiency of dye removal, antibacterial and UV protection were enhanced by researchers using different techniques. Objective: This review focuses on the latest research of dye removal, UV protection and antibacterial activity with mechanisms, to discover the most efficient methods to apply ZnO nanostructures effectively for the textile industry. Findings: The photocatalytic activity and photosensitivity of ZnO nanostructures were enhanced by doping materials such as Cu, Fe2O3, Co, Ce, Al, and Mn. The UV protection of ZnO nanostructures was efficient even with low loading percentages and effectively retained in the textiles. However, the dye removal efficiency was increased with pH due to the high concentration of hydroxyl radicals in the media. Although the UV protection ability of ZnO nanostructures in the textile industry was hindered by photocatalytic activity, scientists had overcome this issue by doping impurities such as SiO2, cobalt, and manganese. The antibacterial properties of ZnO nanostructures were changed according to the loaded amount of zinc oxide nanostructures on the textile surface. In most of the research, Escherichia coli and Staphylococcus aureus were used as test organisms to study the antibacterial property of ZnO nanostructures. The green synthesis of ZnO nanostructures is more favorable for all applications due to their nontoxicity and eco-friendly nature.

Keywords: Zinc oxide; Nanomaterials; Antibacterial; UV protection; Dye removal; Textile industry


. Mejía M, Zapata J, Cuesta D, Ortiz I, Botero L, Galeano B, et al. Properties of antibacterial nano textile for use in hospital environments. Revista Ingeniería Biomédica. 2017;11(22):13-9. https://doi.org/10.24050/19099762.n22.2017.1178

2. Theerthagiri J, Salla S, Senthil RA, Nithyadharseni P, Madankumar A, Arunachalam P, et al. A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology. 2019;30(39):392001. doi :10.1088/1361-6528/ab268a

3. Kant, R., Textile dyeing industry an environmental hazard.vol 14(1)2011. https://m.scirp.org/papers/17027

4. Nassar, M.Y., M.M. Moustafa, and M.M.J.R.a. Taha, Hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counterions to produce nanosized ZnO as an efficient adsorbent for textile dye removal. 2016. 6(48): p. 42180-42195. https://doi.org/10.1039/C6RA04855B

5. Khairol NF, Sapawe N. Electrosynthesis of ZnO nanoparticles deposited onto egg shell for degradation of Congo red. Materials Today: Proceedings. 2018;5(10, Part 2):21936-9. https://doi.org/10.1016/j.matpr.2018.07.053

6. Dehghani MH, Mahdavi P, Treatment W. Removal of acid 4092 dye from aqueous solution by zinc oxide nanoparticles and ultraviolet irradiation.Desalination and Water Treatment 2015;54(12):3464-9. https://doi.org/10.1080/19443994.2014.913267

7. Ansari SA, Khan MM, Lee J, Cho MH. Highly visible light active Ag@ ZnO nanocomposites synthesized by gel-combustion route. Journal of Industrial and Engineering Chemistry 2014;20(4):1602-7. https://doi.org/10.1016/j.jiec.2013.08.006

8. Pudukudy M, Yaakob ZJ. Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity.Journal of Cluster Science 2015;26(4):1187-201. https://doi.org/10.1007/s10876-014-0806-1

9. Aminuzzaman M, Ying LP, Goh W-S, Watanabe AJBoMS. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater Sci 41, 50 (2018). https://doi.org/10.1007/s12034-018-1568-4

10. Khairol NF, Sapawe N. Electrosynthesis of ZnO nanoparticles deposited onto egg shell for degradation of Congo red. Materials Today Prodeedings 2018;5(10):21936-9. https://doi.org/10.1016/j.matpr.2018.07.053

11. Manzoor J, Sharma M. Impact of Textile Dyes on Human Health and Environment. Impact of Textile Dyes on Public Health and the Environment: IGI Global; 2020. p. 162-9. https://doi.org/10.1016/j.biori.2019.09.001

12. Abul A, Samad S, Huq D, Moniruzzaman M, Masum MJ. Textile dye removal from wastewater effluents using chitosan-ZnO nanocomposite. Journal of Textile Science and Engineering 2015;5(200):2. DOI:10.4172/2165-8064.1000200

13. Janotti A, Van de Walle CG. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics. 2009;72(12):126501. doi:10.1088/0034-4885/72/12/126501

14. Chen X, Wu Z, Liu D, Gao. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res Lett 12, 143 (2017). https://doi.org/10.1186/s11671-017-1904-4

15. Li Y, Hou Y, Zou Y. Microwave assisted fabrication of nano-ZnO assembled cotton fibers with excellent UV blocking property and water-wash durability. Fibers Polym 13, 185–190 (2012). https://doi.org/10.1007/s12221-012-0185-x

16. Sharma D, Singh M. Effect of dyeing and finishing treatments on sun protection of woven fabrics: a study.Colourage, 2001:69-74.

17. Algaba I, Riva A, Crews PC. Influence of Fiber Type and Fabric Porosity on the UPF of Summer Fabrics. AATCC review. 2004 Feb 1;4(2).

18. Menter JJCPiD. K. l. Hatch. 2003;31:51-63.

19. Farouk A, Textor T, Schollmeyer E, Tarbuk A, Grancarić AM. Sol-gel-derived inorganic-organic hybrid polymers filled with zno nanoparticles as an ultraviolet protection finish for textiles. Autex Research Journal. 2010;10(2):58-63. https://www.researchgate.net/profile/Anita_Tarbuk/publication/235217154_Sol-gel_Derived_Inorganicorganic_Hybrid_Polymers_Filled_with_ZnO_Nanoparticles_as_Ultraviolet_Protection_Finish_for_Textiles/links/02bfe51076cb46d824000000.pdf

20. Khan A, Nazir A, Rehman A, Naveed M, Ashraf M, Iqbal K, et al. A review of UV radiation protection on humans by textiles and clothing. 2020. https://doi.org/10.1108/IJCST-10-2019-0153

21. Riva A, Algaba IM, Pepió . Action of a finishing product in the improvement of the ultraviolet protection provided by cotton fabrics. Modelisation of the effect. 2006;13(6):697-704. https://doi.org/10.1007/s10570-006-9085-9

22. Scalia S, Tursilli R, Bianchi A, Nostro PL, Bocci E, Ridi F, et al. Incorporation of the sunscreen agent, octyl methoxycinnamate in a cellulosic fabric grafted with β-cyclodextrin. 2006;308(1-2):155-9. https://doi.org/10.1016/j.ijpharm.2005.11.007

23. Mondal SJ. Nanomaterials for UV protective textiles. Journal of Industrial Textiles 2021:1528083721988949. https://doi.org/10.1177/1528083721988949

24. Lu H, Fei B, Xin JH, Wang R, Li . Fabrication of UV-blocking nanohybrid coating via miniemulsion polymerization. Journal of colloid and interface science.2006;300(1):111-6. https://doi.org/10.1016/j.jcis.2006.03.059

25. Ghamsari MS, Alamdari S, Han W, Park H-HJIjon. Impact of nanostructured thin ZnO film in ultraviolet protection.International Journal of Nanomedicine. 2017;12:207. doi:10.2147/ijn.s118637

26. Wang S, Tian H, Ren C, Yu J, Sun MJSr. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci Rep 8, 12009 (2018). https://doi.org/10.1038/s41598-018-30614-3

27. Wang R, Xin J, Tao X. UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics. Inorganic Chemistry 2005;44(11):3926-30. https://doi.org/10.1021/ic0503176

28. Purwar R, Joshi M. Recent Developments in Antimicrobial Finishing of Textiles--A Review. AATCC review. 2004;4(3).

29. d’Água RB, Branquinho R, Duarte MP, Maurício E, Fernando AL, Martins R, et al. Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost in situ synthesis. 2018;42(2):1052-60. DOI https://doi.org/10.1039/C7NJ03418K

30. Karthik S, Siva P, Balu KS, Suriyaprabha R, Rajendran V, Maaza M. Acalypha indica–mediated green synthesis of ZnO nanostructures under differential thermal treatment: Effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity. Advanced Powder Technology.2017;28(12):3184-94. https://doi.org/10.1016/j.apt.2017.09.033

31. El-Naggar ME, Shaarawy S, Hebeish A. Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohydrate Polymers. 2018;181:307-16. https://doi.org/10.1016/j.carbpol.2017.10.074

32. Shaban M, Mohamed F, Abdallah S. Production and characterization of superhydrophobic and antibacterial coated fabrics utilizing ZnO nanocatalyst. Sci Rep 8, 3925 (2018). https://doi.org/10.1038/s41598-018-22324-7


33. Bonaldi R. Functional finishes for high-performance apparel. High-Performance Apparel: Elsevier; 2018. p. 129-56. https://doi.org/10.1016/B978-0-08-100904-8.00006-7

34. Chia PY, Coleman KK, Tan YK, Ong SWX, Gum M, Lau SK, et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nature communications. 2020;11(1):1-7. https://doi.org/10.1038/s41467-020-16670-2

35. Petkova P, Francesko A, Perelshtein I, Gedanken A, Tzanov T. Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. Ultrasonics Sonochemistry.2016;29:244-50. https://doi.org/10.1016/j.ultsonch.2015.09.021

36. Liu Y-j, He L-l, Mustapha A, Li H, Hu Z, Lin M-. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of Applied Microbology 2009;107(4):1193-201. https://doi.org/10.1111/j.1365-2672.2009.04303.x

37. Rajendra R, Balakumar C, Ahammed HAM, Jayakumar S, Vaideki K, Rajesh E, Science, et al. Use of zinc oxide nano particles for production of antimicrobial textiles. International Journal of Engineering, Science and Technology.2010;2(1):202-8. DOI: 10.4314/ijest.v2i1.59113

38. Perelshtein I, Applerot G, Perkas N, Wehrschetz-Sigl E, Hasmann A, Guebitz G, et al. Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. 2009;1(2):361-6. https://doi.org/10.1021/am8000743

39. Shirvan AR, Shakeri M, Bashari A. Recent advances in application of chitosan and its derivatives in functional finishing of textiles. The impact and prospects of green chemistry for textile technology. 2019:107-33. https://doi.org/10.1016/B978-0-08-102491-1.00005-8

40. Dural Erem A, Ozcan G, Skrifvars M. Antibacterial activity of PA6/ZnO nanocomposite fibers. Textile Research Journal.2011;81(16):1638-46. https://doi.org/10.1177/0040517511407380

41. Yang CQ. Flame resistant cotton. In: Handbook of Fire Resistant Textiles 2013 Jan 1 (pp. 177-220). Woodhead Publishing. https://doi.org/10.1533/9780857098931.2.177

42. Rajendra R, Balakumar C, Ahammed HAM, Jayakumar S, Vaideki K, Rajesh E. Use of zinc oxide nano particles for production of antimicrobial textiles. International Journal of Engineering, Science and Technology. 2010;2(1):202-8. DOI: 10.4314/ijest.v2i1.59113

43. Gao Y, Cranston R. Recent advances in antimicrobial treatments of textiles. Textile research journal. 2008;78(1):60-72. https://doi.org/10.1177/0040517507082332

44. Singh G, Joyce EM, Beddow J, Mason TJ. Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. Journal of microbiology, biotechnology and food sciences. 2021 Jan 6;2021:106-20.

45. Teli MD, Kale RD. Polyester nanocomposite fibers with antibacterial properties. Adv Appl Sci Res. 2011;2(4):491-502. https://www.imedpub.com/articles/polyester-nanocomposite-fibers-with-antibacterial-properties.pdf


46. Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong S. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering: C. 2014;41:17-27. https://doi.org/10.1016/j.msec.2014.04.025


47. Jafarirad S, Mehrabi M, Divband B, Kosari-Nasab M. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Materials Science and Engineering: C. 2016;59:296-302. DOI: 10.1016/j.msec.2015.09.089

48. Broasca G, Borcia G, Dumitrascu N, Vrinceanu N. Characterization of ZnO coated polyester fabrics for UV protection. Applied Surface Science. 2013;279:272-8. https://doi.org/10.1016/j.apsusc.2013.04.084

49. Sricharussin W, Threepopnatkul P, Neamjan N. Effect of various shapes of zinc oxide nanoparticles on cotton fabric for UV-blocking and anti-bacterial properties. Fibers and Polymers. 2011;12(8):1037-41. https://doi.org/10.1007/s12221-011-1037-9

50. Hazarika D, Kumar A, Katiyar V. Mimicking Smart Textile by Fabricating Stereocomplex Poly (Lactic Acid) Nanocomposite Fibers. Advances in Sustainable Polymers: Springer; 2020. p. 341-62. https://link.springer.com/chapter/10.1007/978-981-15-1251-3_15

51. Salat M, Petkova P, Hoyo J, Perelshtein I, Gedanken A, Tzanov T. Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohydrate polymers. 2018;189:198-203. https://doi.org/10.1016/j.carbpol.2018.02.033

52. Stankic S, Suman S, Haque F, Vidic J. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Journal of nanobiotechnology. 2016;14(1):1-20. https://doi.org/10.1186/s12951-016-0225-6

53. Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. Journal of applied Toxicology. 2009;29(1):69-78. https://doi.org/10.1002/jat.1385

54. Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments.2008;77(1):16-23. https://doi.org/10.1016/j.dyepig.2007.03.001

55. Malik PK. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes and Pigments. 2003;56(3):239-49. https://doi.org/10.1016/S0143-7208(02)00159-6

56. Rezaee A, Masoumbeigi H, Soltani RDC, Khataee AR, Hashemiyan S. Photocatalytic decolorization of methylene blue using immobilized ZnO nanoparticles prepared by solution combustion method. Desalination and Water Treatment.2012;44(1-3):174-9. https://doi.org/10.1080/19443994.2012.691700

57. Yatmaz H, Akyol A, Bayramoglu M. Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. 2004;43(19):6035-9. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/ie049921z

58. Byrappa K, Subramani A, Ananda S, Rai KL, Dinesh R, Yoshimura M. Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. 2006;29(5):433-8. Bull Mater Sci. https://doi.org/10.1007/BF02914073

59. Dung NT, Van Khoa N, Herrmann J. Photocatalytic degradation of reactive dye RED-3BA in aqueous TiO2 suspension under UV-visible light. International Journal of Photoenergy .2005;7. https://doi.org/10.1155/S1110662X05000024

60. Ghows N, Entezari MH. Kinetic investigation on sono-degradation of Reactive Black 5 with core–shell nanocrystal. Ultrasonics Sonochemistry.2013;20(1):386-94. https://doi.org/10.1016/j.ultsonch.2012.06.013

61. Song L, Chen C, Zhang S, Wei Q. Sonocatalytic degradation of amaranth catalyzed by La3+ doped TiO2 under ultrasonic irradiation. Ultrasonics Sonochemistry. 2011;18(5):1057-61. https://doi.org/10.1016/j.ultsonch.2011.03.002

62. Azfar A, Kasim M, Lokman I, Rafaie H, Mastuli M. Comparative study on photocatalytic activity of transition metals (Ag and Ni)-doped ZnO nanomaterials synthesized via sol–gel method. Royal Society Open Science.2020;7(2):191590. https://doi.org/10.1098/rsos.191590

63. Cai L, Xu T, Shen J, Xiang W. Highly efficient photocatalytic treatment of mixed dyes wastewater via visible-light-driven AgI–Ag3PO4/MWCNTs. Materials Science in Semiconductor Processing. 2015;37:19-28. https://doi.org/10.1016/j.mssp.2014.12.064

64. Chandra R, Mukhopadhyay S, Nath M. TiO2@ ZIF-8: A novel approach of modifying micro-environment for enhanced photo-catalytic dye degradation and high usability of TiO2 nanoparticles. Materials Letters. 2016;164:571-4. https://doi.org/10.1016/j.matlet.2015.11.018

65. Rochkind M, Pasternak S, Paz Y. Using dyes for evaluating photocatalytic properties: a critical review. Molecules. 2015;20(1):88-110. https://doi.org/10.3390/molecules20010088

66. Kumar SG, Kavitha R, Sushma C. Doped Zinc Oxide Nanomaterials: Structureeelectronic Properties Applicationsa and Photocatalytic. Surface Science of Photocatalysis. 2020 Feb 2:285.

67. Yogalakshmi KN, Das A, Rani G, Jaswal V, Randhawa JS. Nano-bioremediation: a new age technology for the treatment of dyes in textile effluents. Bioremediation of Industrial Waste for Environmental Safety: Springer; 2020. p. 313-47. https://doi.org/10.1007/978-981-13-1891-7_15

68. Mohajerani MS, Mazloumi M, Lak A, Kajbafvala A, Zanganeh S, Sadrnezhaad S. Self-assembled zinc oxide nanostructures via a rapid microwave-assisted route. Journal of Crystal Growth .2008;310(15):3621-5. https://doi.org/10.1016/j.jcrysgro.2008.04.045

69. Liu Z, Jin Z, Li W, Qiu J. Preparation of ZnO porous thin films by sol–gel method using PEG template. Materials Letters.2005;59(28):3620-5. https://doi.org/10.1016/j.matlet.2005.06.064

70. Chen D, Jiao X, Cheng G. Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Communications. 1999;113(6):363-6. https://doi.org/10.1016/S0038-1098(99)00472-X

71. Song L, Shuo Z, Quan L, Jun Z, Kang C. QJ-Hao (2012) Trans.22:2459.

72. Molaei P, Rahimi-Moghadam FJMRE. Optimized synthesis of ZnO nanostructures by egg-white content ratio manipulation for photocatalytic applications. Materials Research Express. 2020;6(12):1250h7. https://doi.org/10.1088/2053-1591/ab66ad

73. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Raj GA. Bio-approach: Plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Advanced Powder Technology. 2015;26(6):1639-51. https://doi.org/10.1016/j.apt.2015.09.008

74. Mirgane NA, Shivankar VS, Kotwal SB, Wadhawa GC, Sonawale MC. Waste pericarp of ananas comosus in green synthesis zinc oxide nanoparticles and their application in waste water treatment.Materials Today: Proceedings. 2021;37:886-9. https://doi.org/10.1016/j.matpr.2020.06.045

75. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N. Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;143:304-8. https://doi.org/10.1016/j.saa.2015.01.124


76. Karnan T, Selvakumar SAS. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye. Journal of Molecular Structure.2016;1125:358-65. https://doi.org/10.1016/j.molstruc.2016.07.029

77. Siripireddy B, Mandal BK. Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity.Advanced Powder Technology. 2017;28(3):785-97. https://doi.org/10.1016/j.apt.2016.11.026

78. Nilavukkarasi M, Vijayakumar S, Prathipkumar S. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Materials Science for Energy Technologies.2020;3:335-43. https://doi.org/10.1016/j.mset.2019.12.004

79. Abdullah F, Bakar NA, Bakar MA. Comparative study of chemically synthesized and low temperature bio-inspired Musa acuminata peel extract mediated zinc oxide nanoparticles for enhanced visible-photocatalytic degradation of organic contaminants in wastewater treatment. Journal of Hazardous Materials.2021;406:124779. https://doi.org/10.1016/j.jhazmat.2020.124779

80. Jamdagni P, Khatri P, Rana J. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University-Science. 2018;30(2):168-75. https://doi.org/10.1016/j.jksus.2016.10.002

81. Golmohammadi M, Honarmand M, Ghanbari S. A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;229:117961. https://doi.org/10.1016/j.saa.2019.117961

82. Aminuzzaman M, Ying LP, Goh W-S, Watanabe A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater Sci.2018;41(2):1-10. https://doi.org/10.1007/s12034-018-1568-4

83. Golmohammadi M, Honarmand M, Ghanbari SJSAPAM, Spectroscopy B. A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;229:117961. https://doi.org/10.1016/j.saa.2019.117961

84. Kazeminezhad I, Sadollahkhani A. Photocatalytic degradation of Eriochrome black-T dye using ZnO nanoparticles. Materials Letters. 2014;120:267-70. https://doi.org/10.1016/j.matlet.2014.01.118

85. Barzinjy AA, Azeez HH. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2020;2(5):1-14. https://doi.org/10.1007/s42452-020-2813-1

86. Hayden CG, Roberts MS. Systemic absorption of sunscreen after topical application. Research Letters. 1997;350(9081):863-4. 10.1016/S0140-6736(05)62032-6

87. Ibrahim N, El-Zairy E. Union disperse printing and UV-protecting of wool/polyester blend using a reactive β-cyclodextrin. Carbohydrate Polymers.2009;76(2):244-9. https://doi.org/10.1016/j.carbpol.2008.10.020

88. Giokas DL, Salvador A, Chisvert A. UV filters: from sunscreens to human body and the environment. TrAC Trends in Analytical Chemistry.2007;26(5):360-74. https://doi.org/10.1016/j.trac.2007.02.012

89. McHugh PJ, Knowland J. Characterization of DNA damage inflicted by free radicals from a mutagenic sunscreen ingredient and its location using an in vitro genetic reversion assay.Photochemistry and Photobiology. 1997;66(2):276-81. https://doi.org/10.1111/j.1751-1097.1997.tb08655.x

90. Bohren CF, Huffman DR. Absorption and Scattering of Light by Small Particles. John Wiley & Sons; 2008 Sep 26.

91. Bharat T, Mondal S, Gupta H, Singh P, Das A. Synthesis of doped zinc oxide nanoparticles: a review. Materials Today Proceedings. 2019;11:767-75. https://doi.org/10.1016/j.matpr.2019.03.041

92. Nithya R, Ragupathy S, Sakthi D, Arun V, Kannadasan N. A study on Mn doped ZnO loaded on CSAC for the photocatalytic degradation of brilliant green dye. Chemical Physics Letters. 2020;755:137769. https://doi.org/10.1016/j.cplett.2020.137769

93. Del Gobbo S, Poolwong J, D’Elia V, Ogawa M. Simultaneous controlled seeded-growth and doping of ZnO nanorods with aluminum and cerium: feasibility assessment and effect on photocatalytic activity. Crystal Growth and Design. 2020;20(8):5508-25. https://doi.org/10.1021/acs.cgd.0c00694

94. Rodwihok C, Wongratanaphisan D, Tam TV, Choi WM, Hur SH, Chung JS. Cerium-oxide-nanoparticle-decorated zinc oxide with enhanced photocatalytic degradation of methyl orange. Applied Sciences. 2020;10(5):1697. https://doi.org/10.3390/app10051697

95. Roza L, Febrianti Y, Iwan S, Fauzia V. The role of cobalt doping on the photocatalytic activity enhancement of ZnO nanorods under UV light irradiation. Surfaces and Interfaces. 2020;18:100435. https://doi.org/10.1016/j.surfin.2020.100435

96. Khanizadeh B, Khosravi M, Behnajady MA, Shamel A, Vahid B. Mg and La Co-doped ZnO nanoparticles prepared by sol–gel method: synthesis, characterization and photocatalytic activity. Periodica Polytechnica Chemical Engineering. 2020;64(1):61-74. https://doi.org/10.3311/PPch.12959

97. Rahmah MI, Sabry RS, Aziz WJ. Synthesis and study photocatalytic activity of Fe2O3-doped ZnO nanostructure under visible light irradiation. International Journal of Environmental Analytical Chemistry.2020:1-14. https://doi.org/10.1080/03067319.2019.1699549

98. Yu Y, Yao B, He Y, Cao B, Ma W, Chang L, et al. Oxygen defect-rich In-doped ZnO nanostructure for enhanced visible light photocatalytic activity. Materials Chemistry and Physics. 2020;244:122672. https://doi.org/10.1016/j.matchemphys.2020.122672

99. Chand P, Singh V. Enhanced visible-light photocatalytic activity of samarium-doped zinc oxide nanostructures. Journal of Rare Earths. 2020;38(1):29-38. https://doi.org/10.1016/j.jre.2019.02.009

100. Yarahmadi M, Maleki-Ghaleh H, Mehr ME, Dargahi Z, Rasouli F, Siadati MH, et al. Synthesis and characterization of Sr-doped ZnO nanoparticles for photocatalytic applications. Journal of Alloys and Compounds. 2021;853:157000. https://doi.org/10.1016/j.jallcom.2020.157000

101. Broasca G, Borcia G, Dumitrascu N, Vrinceanu N. Characterization of ZnO coated polyester fabrics for UV protection. Applied Surface Science. 2013;279:272-8. https://doi.org/10.1016/j.apsusc.2013.04.084

102. Zhao B, Chen H. Synthesis novel multi-petals ZnO nano-structure by a cyclodextrin assisted solution route. Materials Letters. 2007;61(27):4890-3. https://doi.org/10.1016/j.matlet.2007.03.066

103. Sricharussin W, Threepopnatkul P, Neamjan N. Effect of various shapes of zinc oxide nanoparticles on cotton fabric for UV-blocking and anti-bacterial properties. Fibers and Polymers. 2011;12(8):1037-41. https://doi.org/10.1007/s12221-011-1037-9

104. Mousa M, Khairy M. Synthesis of nano-zinc oxide with different morphologies and its application on fabrics for UV protection and microbe-resistant defense clothing. Textile Research Journal. 2020;90(21-22):2492-503. https://doi.org/10.1177/0040517520920952

105. Gorjanc M, Jazbec K, Šala M, Vesel A, Mozetič M. Creating cellulose fibres with excellent UV protective properties using moist CF 4 plasma and ZnO nanoparticles. Cellulose. 2014;21(4):3007-21. https://doi.org/10.1007/s10570-014-0284-5


106. Tsuzuki T, He R, Wang J, Sun L, Wang X, Hocking R. Reduction of the photocatalytic activity of ZnO nanoparticles for UV protection applications. 2012;9(10-12):1017-29. https://dro.deakin.edu.au/view/DU:30049632

107. Xue C-H, Yin W, Jia S.T, Ma J. UV-durable superhydrophobic textiles with UV-shielding properties by coating fibers with ZnO/SiO2 core/shell particles. Nanotechnology. 2011;22(41):415603. http://dx.doi.org/10.1088/0957-4484/22/41/415603

108. Asmat-Campos D, Delfín-Narciso D, Juárez-Cortijo L. Textiles Functionalized with ZnO Nanoparticles Obtained by Chemical and Green Synthesis Protocols: Evaluation of the Type of Textile and Resistance to UV Radiation. Fibers.2021;9(2):10. https://doi.org/10.3390/fib9020010

109. Kawano T, Imai H. A simple preparation technique for shape-controlled zinc oxide nanoparticles: Formation of narrow size-distributed nanorods using seeds in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;319(1-3):130-5. https://doi.org/10.1016/j.colsurfa.2007.05.019


110. Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions. Journal of materials chemistry. 2002;12(12):3773-8.https://doi.org/10.1039/B205384E

111. Tania IS, Ali M. Effect of the coating of zinc oxide (ZnO) nanoparticles with binder on the functional and mechanical properties of cotton fabric. Materials Today: Proceedings. 2021;38:2607-11. https://doi.org/10.1016/j.matpr.2020.08.171

112. Eskani I, Haerudin A, Setiawan J, Lestari D, Astuti W, editors. Application of ZnO nanoparticles for producing antibacterial batik. IOP Conference Series: Materials Science and Engineering; 2020: IOP Publishing. https://doi.org/10.1080/00405000.2021.1883907

113. Coyle MB. Manual of antimicrobial susceptibility testing: BCIT Imaging Services; 2005. https://www.worldcat.org/title/manual-of-antimicrobial-susceptibility-testing/oclc/144685597

114. Mahmoudi Alashti T, Motakef-Kazemi N, Shojaosadati SA. In situ production and deposition of nanosized zinc oxide on cotton fabric. Iranian Journal of Chemistry and Chemical Engineering (IJCCE). 2021;40(1):1-9. doi10.30492/IJCCE.2020.38033

115. Shaheen TI, El-Naggar ME, Abdelgawad AM, Hebeish A. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International Journal of Biological Macromolecules. 2016;83:426-32. https://doi.org/10.1016/j.ijbiomac.2015.11.003

116. Lai Y, Guo Y, Xu L, Chang X, Zhang X, Xu G, et al. Plasma Enhanced Fluorine-Free Superhydrophobic Polyester (PET) Fabric with Ultra-Robust Antibacterial and Antibacterial Adhesion Properties. Coatings. 2021;11(1):15. https://doi.org/10.3390/coatings11010015

117. Pintarić LM, Škoc MS, Bilić VL, Pokrovac I, Kosalec I, Rezić I. Synthesis, Modification and Characterization of Antimicrobial Textile Surface Containing ZnO Nanoparticles. Polymers. 2020;12(6):1210. https://doi.org/10.3390/polym12061210

118. Javed A, Azeem M, Wiener J, Thukkaram M, Saskova J, Mansoor T. Ultrasonically Assisted In Situ Deposition of ZnO Nano Particles on Cotton Fabrics for Multifunctional Textiles. Fibers and Polymers. 2021;22(1):77-86. https://doi.org/10.1007/s12221-021-0051-9

119. Gusatti M, do Rosário JdA, de Campos CEM, Kunhen NC, de Carvalho EU, Riella HG, et al. Production and characterization of ZnO nanocrystals obtained by solochemical processing at different temperatures. Journal of Nanoscience and Nanotechnology. 2010;10(7):4348-51. https://doi.org/10.1166/jnn.2010.2198

120. Souza D, Gusatti M, Ternus R, Fiori M, Riella H. In situ growth of ZnO nanostructures on cotton fabric by solochemical process for antibacterial purposes. Journal of Nanomaterials. 2018;2018. https://doi.org/10.1155/2018/9082191


121. Mohamed FA, Ibrahim HM, El-Kharadly EA, El-Alfy EA. Improving dye ability and antimicrobial properties of cotton fabric. Journal of Applied Pharmaceutical Science. 2016;6(2):119-23. https://www.japsonline.com/admin/php/uploads/1784_pdf.pdf

122. Lee J, Easteal A, Pal U, Bhattacharyya D. Evolution of ZnO nanostructures in sol–gel synthesis. Current Applied Physics. 2009;9(4):792-6. https://doi.org/10.1016/j.cap.2008.07.018

123. Mousa M, Khairy M. Synthesis of nano-zinc oxide with different morphologies and its application on fabrics for UV protection and microbe-resistant defense clothing. Textile Research Journal. 2020;90(21-22):2492-503. https://doi.org/10.1177/0040517520920952

124. Yazdanpanah A, Shahidi S, Dorranian D, Saviz S. In situ synthesize of ZnO nanoparticles on cotton fabric by laser ablation method; antibacterial activities. The Journal of The Textile Institute. 2020:1-11. https://doi.org/10.1080/00405000.2020.1870325

125. Barani H. Preparation of antibacterial coating based on in situ synthesis of ZnO/SiO2 hybrid nanocomposite on cotton fabric.Applied Surface Science. 2014;320:429-34. https://doi.org/10.1016/j.apsusc.2014.09.102

126. Barani H. Surface activation of cotton fiber by seeding silver nanoparticles and in situ synthesizing ZnO nanoparticles. New Journal of Chemistry. 2014;38(9):4365-70. https://doi.org/10.1039/C4NJ00547C

127. Lan S, Liu L, Li R, Leng Z, Gan S. Hierarchical hollow structure ZnO: synthesis, characterization, and highly efficient adsorption/photocatalysis toward Congo red. Industrial Engineering Chemistry Research. 2014;53(8):3131-9. https://doi.org/10.1021/ie404053m

128. Davar F, Majedi A, Mirzaei A. Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. Journal of the American Ceramic Society. 2015;98(6):1739-46. https://doi.org/10.1111/jace.13467

129. Ejhieh AN, Khorsandi M. Photodecolorization of Eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst. Journal of Hazardous Materials. 2010;176(1-3):629-37. https://doi.org/10.1016/j.jhazmat.2009.11.077

130. Jazbec K, Šala M, Mozetič M, Vesel A, Gorjanc M. Functionalization of cellulose fibres with oxygen plasma and ZnO nanoparticles for achieving UV protective properties. Journal of Nanomaterials. 2015;2015. https://doi.org/10.1155/2015/346739

131. Li M, Farooq A, Jiang S, Zhang M, Mussana H, Liu L. Functionalization of cotton fabric with ZnO nanoparticles and cellulose nanofibrils for ultraviolet protection. Textile Research Journal. 2021:00405175211001807. https://doi.org/10.1177/00405175211001807

132. Sun L, Rippon JA, Cookson PG, Wang X, King K, Koulaeva O, et al. Nano zinc oxide for UV protection of textiles. 2008;7(2-3):224-35. https://doi.org/10.1504/IJTTC.2008.020361

133. d’Água RB, Branquinho R, Duarte MP, Maurício E, Fernando AL, Martins R, et al. Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost in situ synthesis. New Journal of Chemistry. 2018;42(2):1052-60. DOI https://doi.org/10.1039/C7NJ03418K

134. Sun L, Du Y, Fan L, Chen X, Yang J. Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer. 2006;47(6):1796-804. https://doi.org/10.1016/j.polymer.2006.01.073

135. Abou-Zeid N, Waly A, Kandile N, Rushdy A, El-Sheikh M, Ibrahim H. Preparation, characterization and antibacterial properties of cyanoethylchitosan/cellulose acetate polymer blended films. Carbohydrate Polymers. 2011;84(1):223-30. https://doi.org/10.1016/j.carbpol.2010.11.026

136. Dimapilis EAS, Hsu C-S, Mendoza RMO, Lu M-C. Zinc oxide nanoparticles for water disinfection. Sustainable Environment Research. 2018;28(2):47-56. https://doi.org/10.1016/j.serj.2017.10.001

137. Ristiani S. Pengembangan Teknik Smock pada Batik Untuk Meningkatkan Daya Saing Produk Fesyen. Yogyakarta. 2017.

138. Kanade P, Patel B. Copper nano-sol loaded woven fabrics: structure and color characterization. Fashion and Textiles. 2017;4(1):1-12. https://doi.org/10.1186/s40691-017-0094-0

139. Fouda A, Saad E, Salem SS, Shaheen TI. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis. 2018;125:252-61. https://doi.org/10.1016/j.micpath.2018.09.030

140. Zou Y-L, Li Y, Li J-G, Xie W. Hydrothermal synthesis of momordica-like CuO nanostructures using egg white and their characterisation. Chemical Papers. 2012;66(4):278-83. https://doi.org/10.2478/s11696-012-0139-1

141. Qin L, Shing C, Sawyer S, Dutta PS. Enhanced ultraviolet sensitivity of zinc oxide nanoparticle photoconductors by surface passivation. Optical Materials. 2011;33(3):359-62. https://doi.org/10.1016/j.optmat.2010.09.020

142. Szczesny R, Scigala A, Derkowska-Zielinska B, Skowronski L, Cassagne C, Boudebs G, et al. Synthesis, Optical, and Morphological Studies of ZnO Powders and Thin Films Fabricated by Wet Chemical Methods. 2020;13(11):2559. https://doi.org/10.3390/ma13112559

143. Selvam S, Sundrarajan M. Functionalization of cotton fabric with PVP/ZnO nanoparticles for improved reactive dyeability and antibacterial activity. Carbohydrate Polymers. 2012;87(2):1419-24. https://doi.org/10.1016/j.carbpol.2011.09.025

144. Sivakumar A, Murugan R, Sundaresan K. Certain investigations on the effect of nano metal oxide finishes on the multifunctional characteristics of cotton fabrics. Journal of Industrial Textiles. 2013;43(2):155-73. https://doi.org/10.1177/1528083712450741

145. Yadav A, Prasad V, Kathe A, Raj S, Yadav D, Sundaramoorthy C, et al. Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Materials Science. 2006;29(6):641-5. https://doi.org/10.1007/s12034-006-0017-y

146. Çakır BA, Budama L, Topel Ö, Hoda N. Synthesis of ZnO nanoparticles using PS-b-PAA reverse micelle cores for UV protective, self-cleaning and antibacterial textile applications.Colloids and Surface A:Physicochemical and Engineering Aspects. 2012;414:132-9 https://doi.org/10.1016/j.colsurfa.2012.08.015.

147. Vigneshwaran N, Kumar S, Kathe A, Varadarajan P, Prasad V. Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology. 2006;17(20):5087.

148. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano letters. 2006;6(4):866-70. https://doi.org/10.1021/nl052326h

149. Zhang L, JIANG Y, DING PM. YORKD., 2007. Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnOnanofluids).479-89. DOI:10.1007/s11051-006-9150-1

150. Deng Y, Englehardt JD. Treatment of landfill leachate by the Fenton process. Water research. 2006;40(20):3683-94. https://doi.org/10.1016/j.watres.2006.08.009

151. Kasemets K, Ivask A, Dubourguier H-C, Kahru A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in vitro. 2009;23(6):1116-22. https://doi.org/10.1016/j.tiv.2009.05.015


152. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, et al. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environmental science & technology. 2006;40(14):4374-81. https://doi.org/10.1021/es052069i

153. Li M, Zhu L, Lin D. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environmental science & technology. 2011;45(5):1977-83. https://doi.org/10.1021/es102624t

154. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, et al. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. Journal of fermentation and bioengineering. 1998;86(5):521-2. https://doi.org/10.1016/S0922-338X(98)80165-7

155. Lipovsky A, Nitzan Y, Gedanken A, Lubart R. Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology. 2011;22(10):105101. doi: 10.1088/0957-4484/22/10/105101.

156. Zhang L, Ding Y, Povey M, York D. ZnO nanofluids–A potential antibacterial agent. Progress in Natural Science. 2008;18(8):939-44. https://doi.org/10.1016/j.pnsc.2008.01.026

157. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P. ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Materials Chemistry and Physics. 2010;121(1-2):198-201. https://doi.org/10.1016/j.matchemphys.2010.01.020

158. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters. 2015;7(3):219-42. https://doi.org/10.1007/s40820-015-0040-x

159. Patil AH, Jadhav SA, More VB, Sonawane KD, Vhanbatte SH, Kadole PV, et al. A new method for single step sonosynthesis and incorporation of ZnO nanoparticles in cotton fabrics for imparting antimicrobial property. Chemical Papers. 2021;75(3):1247-57. https://doi.org/10.1007/s11696-020-01358-0

160. Fiandra L, Bonfanti P, Piunno Y, Nagvenkar AP, Perlesthein I, Gedanken A, et al. Hazard assessment of polymer-capped CuO and ZnO nanocolloids: A contribution to the safe-by-design implementation of biocidal agents. NanoImpact. 2020;17:100195. https://doi.org/10.1016/j.impact.2019.100195

161. da Silva BL, Abuçafy MP, Manaia EB, Junior JAO, Chiari-Andréo BG, Pietro RCR, et al. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. International Journal of Nanomedicine. 2019;14:9395. doi:10.1016/j.ceramint.2017.06.027

162. Barani H, Montazer M, Calvimontes A, Dutschk V. Surface roughness and wettability of wool fabrics loaded with silver nanoparticles: Influence of synthesis and application methods. Textile research journal. 2013;83(12):1310-8. https://doi.org/10.1177/0040517512464290

163. Varesano A, Rombaldoni F, Tonetti C, Di Mauro S, Mazzuchetti G. Chemical treatments for improving adhesion between electrospun nanofibers and fabrics. Journal of Applied Polymer Science. 2014;131(2). https://doi.org/10.1002/app.39766

164. Fallah MH, Fallah SA, Zanjanchi MA. Synthesis and Characterization of Nano‐sized Zinc Oxide Coating on Cellulosic Fibers: Photoactivity and Flame‐retardancy Study. Chinese Journal of Chemistry. 2011;29(6):1239-45. https://doi.org/10.1002/cjoc.201190230

165. Zeeb B, Thongkaew C, Weiss J. Theoretical and practical considerations in electrostatic depositioning of charged polymers. Journal of Applied Polymer Science. 2014;131(7).


166. Kaur J, Gupta K, Kumar V, Bansal S, Singhal S. Synergic effect of Ag decoration onto ZnO nanoparticles for the remediation of synthetic dye wastewater. Ceramics International. 2016;42(2):2378-85. https://doi.org/10.1016/j.ceramint.2015.10.035

167. Khataee A, Darvishi Cheshmeh Soltani R, Hanifehpour Y, Safarpour M, Gholipour Ranjbar H, Joo SW, et al. Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation.Industrial Engineering Chemistry. 2014;53(5):1924-32. https://doi.org/10.1021/ie402743u

168. Khataee A, Soltani RDC, Karimi A, Joo SW. Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process.Ultrasonics Sonochemistry. 2015;23:219-30. https://doi.org/10.1016/j.ultsonch.2014.08.023

169. Khataee A, Karimi A, Arefi-Oskoui S, Soltani RDC, Hanifehpour Y, Soltani B, et al. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrasonics Sonochemistry. 2015;22:371-81. https://doi.org/10.1016/j.ultsonch.2014.05.023

170. Shah AA, Bhatti MA, Tahira A, Chandio AD, Channa IA, Sahito AG, et al. Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceramics International. 2020;46(8):9997-10005. https://doi.org/10.1016/j.ceramint.2019.12.024


© 2021 Nisansala et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.