• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 37, Pages: 1842-1849

Original Article

A Fixed Point Result with (CLR) Property in S-Metric Spaces

Received Date:16 May 2022, Accepted Date:14 July 2022, Published Date:26 September 2022


Objective : The present paper is an attempt to improve results on fixed point theorems for four pairwise occasionally weakly compatible (owc) mappings in S-metric spaces. Method: We have applied quadratic inequality to prove certain fixed-point results for four pairwise owc mappings under weaker conditions using (CLR) property. Findings: We have generalized and expanded some already existing results in the literature and new results are obtained that generated the common fixed points in S-metric spaces. Befitting examples are given to support our findings. Novelty: Existence and uniqueness of fixed points in S-metric spaces are established by using (CLRFG) property even in the absence of containment conditions. 2010 Mathematics Subject Classification: 47H10, 54H25

Keywords: Smetric Space; Coincidence Point; Common Fixed Point; Occasional Weak Compatibility; (CLR) Property


  1. Jungck G. Commuting Mappings and Fixed Points. The American Mathematical Monthly. 1976;83(4):261–263. Available from: https://doi.org/10.1080/00029890.1976.11994093
  2. Jungck G. Compatible mappings and common fixed points. International Journal of Mathematics and Mathematical Sciences. 1986;9(4):771–779. Available from: https://doi.org/10.1155/S0161171286000935
  3. Jungck G, Rhoades BE. Fixed points for set valued functions without continuity. Indian Journal of pure and applied mathematics. 1998;29:227–238. Available from: https://www.researchgate.net/publication/236801026_Fixed_Points_for_Set_Valued_Functions_Without_Continuity
  4. Al-Thagafi MA, Shahzad N. Generalized I-nonexpansive selfmaps and invariant approximations. Acta Mathematica Sinica, English Series. 2008;24(5):867–876. Available from: https://doi.org/10.1007/s10114-007-5598-x
  5. Aamri M, Moutawakil DE. Some new common fixed point theorems under strict contractive conditions. Journal of Mathematical Analysis and Applications. 2002;270:59–67. Available from: https://doi.org/10.1016/S0022-247X(02)00059-8
  6. Sintunavarat W, Kumam P. Common Fixed Point Theorems for a Pair of Weakly Compatible Mappings in Fuzzy Metric Spaces. Journal of Applied Mathematics. 2011;2011:1–14. Available from: https://doi.org/10.1155/2011/637958
  7. Limprayoon J, Kitkuan D. The (CLR)-property and common fixed point theorems in b-metric spaces. Advances in Mathematics: Scientific Journal. 2021;10(6):2821–2829. Available from: https://www.research-publication.com/amsj/uploads/papers/vol-10/iss-06/AMSJ-2021-N06-10.pdf
  8. Nikbakhtsarvestani F, Vaezpour SM, Asadi M. Common Fixed Point Theorems for Weakly Compatible Mappings by (CLR) Property on Partial Metric Space. Iranian Journal of Mathematical Sciences and Informatics. 2019;14:19–32. Available from: https://doi.org/10.7508/ijmsi.2019.02.003
  9. Gnanaprakasam, Joseph A. Existence and Uniqueness of Common Fixed Point on Complex Partial-Metric Space. Journal of Function Spaces. 2022;p. 2022. Available from: https://doi.org/10.1155/2022/1925612
  10. Srinivas V, Satyanna K. Some Results by Using CLR’s-Property in Probabilistic 2-Metric Space. International Journal of Analysis and Applications. 2021;19(6):904–914. Available from: https://doi.org/10.28924/2291-8639-19-2021-904
  11. Kanchanapally P, V. NR. Common fixed points in S-metric spaces using EA and CLR-properties. Malaya Journal of Matematik. 2020;8(3):1273–1277. Available from: https://doi.org/10.26637/MJM0803/0095
  12. Gupta V, Shatanawi W, Kanwar A. Coupled Fixed Point Theorems Employing CLR-Property on V -Fuzzy Metric Spaces. Mathematics. 2020;8(3):404. Available from: https://doi.org/10.3390/math8030404
  13. Mustafa Z, Sims B. A new approach to generalized metric spaces. Journal of Nonlinear and convex Analysis. 2006;7(2):289.
  14. Sedghi S, Shobe N, Zhou H. A Common Fixed Point Theorem in -Metric Spaces. Fixed Point Theory and Applications. 2007;2007(1):027906. Available from: https://doi.org/10.1155/2007/27906
  15. Mlaiki N, Özgür NY, Taş N. New Fixed-Point Theorems on an S-metric Space via Simulation Functions. Mathematics. 2019;7(7):583. Available from: https://doi.org/10.3390/math7070583
  16. Saluja GS, Kim WHJK, Lim. Common fixed point theorems under generalized (ψ-ϕ)-weak contractions in S-metric spaces with applications. Nonlinear Functional Analysis and Applications. 2021;26:13–33. Available from: https://doi.org/10.22771/nfaa.2021.26.01.02
  17. Sedghi S, Dung NV. Fixed point theorems in fuzzy metric spaces. 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). 2013;255:113–124. Available from: https://eudml.org/serve/261245/accessibleLayeredPdf/0
  18. Taş K, Telci M, Fisher B. Common fixed point theorems for compatible mappings. International Journal of Mathematics and Mathematical Sciences. 1996;19(3):451–456. Available from: https://doi.org/10.1155/S0161171296000646


© 2022 Rao & Dixit. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.