• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 32, Pages: 2518-2533

Original Article

A Hybrid Approach for Weak Learners Utilizing Ensemble Technique for Alzheimer’s Disease Prognosis

Received Date:29 April 2023, Accepted Date:13 July 2023, Published Date:26 August 2023


Objectives: To develop a hybrid machine learning (ML) model that predicts Alzheimer’s disease (AD) accurately. Methods : This study used the Open Access Series of Imaging Studies (OASIS) dataset to develop a hybrid ML model. Given this data, we utilized five algorithms i.e., Logistic Regression, Gaussian Naive Bayes, K Nearest Neighbor, Support Vector Machine, and Decision Tree. An ensemble technique was employed to construct an ML-based hybrid model with 343 observations, 40% of which were used for training and 60% for testing. Findings: Using the voting classifier technique, the hybrid Machine learning model obtained an accuracy of 89.28%. Following hyperparameter tuning, the model’s accuracy was increased to 90.62%. The effectiveness of AD classification was assessed using Accuracy, Precision, Recall, and F1-score. Novelty: The results demonstrate that, even with a limited amount of training data, the Hybrid ML modelling approach can reliably predict Alzheimer’s disease in real-world community settings.

Keywords: Alzheimer’s Disease; Classification; Machine Learning; OASIS; Prognosis


  1. Diogo VS, Ferreira HA, Prata D. Early diagnosis of Alzheimer’s disease using machine learning: a multi-diagnostic, generalizable approach. Alzheimer's Research & Therapy. 2022;14(1):107. Available from: https://doi.org/10.1186/s13195-022-01047-y
  2. Altay F, Sanchez GR, James Y, Faraone SV, Velipasalar S, Salekin A. Preclinical Stage Alzheimer's Disease Detection Using Magnetic Resonance Image Scans. 2020. Available from: https://doi.org/10.48550/arXiv.2011.14139
  3. Demidova LA, Klyueva IA, Pylkin AN. Hybrid Approach to Improving the Results of the SVM Classification Using the Random Forest Algorithm. Procedia Computer Science. 2019;150:455–461. Available from: https://doi.org/10.1016/j.procs.2019.02.077
  4. Khan A, Zubair S. Development of a three tiered cognitive hybrid machine learning algorithm for effective diagnosis of Alzheimer’s disease. Journal of King Saud University - Computer and Information Sciences. 2022;34(10):8000–8018. Available from: https://doi.org/10.1016/j.jksuci.2022.07.016
  5. Bae JB, Lee S, Jung W, Park S, Kim W, Oh H, et al. Identification of Alzheimer's disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Scientific Reports. 2020;10(1). Available from: https://doi.org/10.1038/s41598-020-79243-9
  6. Khan A, Zubair S. An Improved Multi-Modal based Machine Learning Approach for the Prognosis of Alzheimer’s disease. Journal of King Saud University - Computer and Information Sciences. 2022;34(6):2688–2706. Available from: https://doi.org/10.1016/j.jksuci.2020.04.004
  7. Loddo A, Buttau S, Ruberto CD. Deep learning based pipelines for Alzheimer's disease diagnosis: A comparative study and a novel deep-ensemble method. Computers in Biology and Medicine. 2022;141:105032. Available from: https://doi.org/10.1016/j.compbiomed.2021.105032
  8. Kruthika KR, Rajeswari, Maheshappa HD. Multistage classifier-based approach for Alzheimer's disease prediction and retrieval. Informatics in Medicine Unlocked. 2019;14:34–42. Available from: https://doi.org/10.1016/j.imu.2018.12.003
  9. Xiao R, Cui X, Qiao H, Zheng X, Zhang Y, Zhang C, et al. Early diagnosis model of Alzheimer’s disease based on sparse logistic regression with the generalized elastic net. Biomedical Signal Processing and Control. 2021;66:102362. Available from: https://doi.org/10.1016/j.bspc.2020.102362
  10. Naganandhini S, Shanmugavadivu P. Effective Diagnosis of Alzheimer’s Disease using Modified Decision Tree Classifier. Procedia Computer Science. 2019;165:548–555. Available from: https://doi.org/10.1016/j.procs.2020.01.049
  11. Richhariya B, Tanveer M, Rashid AH. Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM-RFE) Biomedical Signal Processing and Control. 2020;59:101903. Available from: https://doi.org/10.1016/j.bspc.2020.101903
  12. Battineni G, Chintalapudi N, Amenta F, Traini E. A Comprehensive Machine-Learning Model Applied to Magnetic Resonance Imaging (MRI) to Predict Alzheimer’s Disease (AD) in Older Subjects. Journal of Clinical Medicine. 2020;9(7):2146. Available from: https://doi.org/10.3390/jcm9072146
  13. Sharma S, Gupta S, Gupta D, Altameem A, Saudagar AKJ, Poonia RC, et al. HTLML: Hybrid AI Based Model for Detection of Alzheimer’s Disease. Diagnostics. 2022;12(8):1833. Available from: https://doi.org/10.3390/diagnostics12081833
  14. ES, Shahina A, Khan N. Dementia Prediction on OASIS Dataset using Supervised and Ensemble Learning Techniques. International Journal of Engineering and Advanced Technology. 2020;9(5):244–254. Available from: https://doi.org/10.35940/ijeat.A1827.1010120
  15. Diego IMD, Redondo AR, Fernández RR, Navarro J, Moguerza JM. General Performance Score for classification problems. Applied Intelligence. 2022;52(10):12049–12063. Available from: https://doi.org/10.1007/s10489-021-03041-7
  16. Antor MB, Jamil AHMS, Mamtaz M, Khan MM, Aljahdali S, Kaur M, et al. A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer’s Disease. Journal of Healthcare Engineering. 2021;2021:1–12. Available from: https://doi.org/10.1155/2021/9917919
  17. Khan A, Zubair S. Expansion of Regularized Kmeans Discretization Machine Learning Approach in Prognosis of Dementia Progression. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). 2020;p. 1–6. Available from: https://doi.org/10.1109/ICCCNT49239.2020.9225397
  18. Salehi W, Baglat P, Gupta G. Multiple Machine Learning Models for Detection of Alzheimer's Disease Using OASIS Dataset. Advances in Information and Communication Technology. 2020;p. 614–622. Available from: https://doi.org/10.1007/978-3-030-64849-7_54
  19. Kavitha C, Mani V, Srividhya SR, Khalaf OI, Romero CAT. Early-Stage Alzheimer's Disease Prediction Using Machine Learning Models. Frontiers in Public Health. 2022;10. Available from: https://doi.org/10.3389/fpubh.2022.853294


© 2023 Parvez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.