• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 41, Pages: 3599-3604

Original Article

Existence and Non - Existence of Exponential Diophantine Triangles Over Triangular Numbers

Received Date:14 September 2023, Accepted Date:24 September 2023, Published Date:31 October 2023


Objectives: The specified problem addressed here is the existence and non-existence of Exponential Diophantine triangles over triangular numbers ( ). Methods: An Exponential Diophantine triangle over triangular numbers is defined as a triangle with sides and where and are non - negative integers such that . To prove the existence of such triangles, negative Pell’s equation and its solutions are used along with some basic number theoretic concepts. To verify the non-existence, the well-known Catalan’s conjecture, binomial expansion, and various theories concerning congruence are employed. Findings: Here it is proved that, for five different choices of sides, an Exponential Diophantine triangle over can be constructed. In particular, infinitely many such triangles can be found. For some particular choice of sides, Python coding is displayed along with its output to verify the existence of required triangles. On the other side, another five different choices of sides are considered and it is shown that no considered type of triangles exists in these cases. Novelty: The idea of solving an exponential Diophantine equation and the idea of constructing triangles under some conditions using Diophantine equations already exists in the mathematical society. This article is created uniquely by combining these two concepts along with the innovative usage of exponential Diophantine equations.

Keywords: Exponential Diophantine triangle, Exponential Diophantine Triangle over triangular numbers, Exponential Diophantine equation, Triangles, Triangular numbers


  1. Mahalakshmi M, Kannan J. Some annotations on almost and pseudo almost equilateral rational rectangles. Research and Reflections on Education. 2022;20(3A):88–93. Available from: https://www.sxcejournal.com/spe-oct-2022/15.pdf
  2. Mahalakshmi M, Kannan J, Narasimman G. Certain sequels on almost equilateral triangles. Advances and Applications in Mathematical Sciences. 2022;22(1):149–157. Available from: https://www.mililink.com/upload/article/2146637988aams_vol_221_november_2022_a13_p149-157_m._mahalakshmi_et_al..pdf
  3. Aggarwal S, Kumar S. On the Exponential Diophantine Equation (13)2m + (6r + 1)n = z2. Journal of Scientific Research. 2021;13(3):845–849. Available from: https://doi.org/10.3329/jsr.v13i3.52611
  4. Aggarwal S, Kumar S. On the Exponential Diophantine Equation 𝑀3 𝑝 + 𝑀5 π‘ž = π‘Ÿ 2. International Journal of Research and Innovation in Applied Science. 2021;6(3):126–127. Available from: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/Vol.6&Issue3/126-127.pdf
  5. Fei S, Luo J. A Note on the Exponential Diophantine Equation (rlm2−1)x+(r(r−l)m2+1)y=(rm)z. Bulletin of the Brazilian Mathematical Society. 2022;53:1499–1517. Available from: https://doi.org/10.1007/s00574-022-00314-8
  6. Gayo WS, Bacani JB. On the Diophantine Equation Mp^x + (Mq + 1)^y = z^2. European Journal of Pure and Applied Mathematics. 2021;14(2):396–403. Available from: https://doi.org/10.29020/nybg.ejpam.v14i2.3948
  7. Hamtat A, Behloul D. On a Diophantine equation on triangular numbers. Miskolc Mathematical Notes. 2017;18(2):779–786. Available from: https://core.ac.uk/download/pdf/163100974.pdf
  8. Kannan J, Somanath M, Raja K. On the class of solutions for the hyperbolic Diophantine equation. International Journal of Apllied Mathematics. 2019;32(3):443–449. Available from: https://www.diogenes.bg/ijam/contents/2019-32-3/6/6.pdf
  9. Riemel T. On special exponential Diophantine equations. Notes on Number Theory and Discrete Mathematics. 2023;29(3):598–602. Available from: https://nntdm.net/papers/nntdm-29/NNTDM-29-3-598-602.pdf
  10. Somanath M, Raja K, Kannan J, Mahalakshmi M. On a class of solution for a quadratic Diophantine equation. Advances and Applications in Mathematical Sciences. 2020;19(11):1097–1103. Available from: https://www.mililink.com/upload/article/988291244aams_vol_1911_sep_2020_a2_p1097-1103__manju_somanath_and_m._mahalakshmi.pdf
  11. Somanath M, Raja K, Kannan J, Nivetha S. Exponential Diophantine equation in three unknowns. Advances and Applications in Mathematical Sciences. 2020;19(11):1113–1118. Available from: https://www.mililink.com/upload/article/1907508386aams_vol_1911_sep_2020_a4_p1113-1118__manju_somanath_and_s._nivetha.pdf
  12. Kaleeswari K, Kannan J, Narasimman G. Exponential Diophantine equations involving isolated primes. Advances and Applications in Mathematical Sciences. 2022;22(1):169–177. Available from: https://www.mililink.com/upload/article/276622500aams_vol_221_november_2022_a15_p169-177_k._kaleeswari,_j._kannan_and_g._narasimman.pdf
  13. Kannan J, Somanath M. Fundamental Perceptions in Contemporary Number Theory, Computational Mathematics and Analysis. (pp. 1-185) New York, USA. Nova Science Publishers. 2023.


© 2023 Mahalakshmi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.