• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 21, Pages: 1572-1579

Original Article

KHiTE: Multilingual Speech Acquisition to Monolingual Text Translation

Received Date:28 March 2023, Accepted Date:06 May 2023, Published Date:31 May 2023


Objectives: To develop a system that accepts cross-lingual spoken reviews consisting of two to four languages, translate to target language text for Indic languages namely Kannada, Hindi, Telugu and/or English termed as cross lingual speech identification and text translation system. Methods: Hybridization of software engineering models are used in natural languages for pre-processing such as noise removal and speech splitting to obtain phonemes. Combinatorial models namely Hidden-Markov-Model, Artificial Neural Networks, Deep Neural Networks and Convulutional Neural Networks were deployed for direct and indirect speech mapping. Trained corpus consisting of thousand phonemes in the form of wave files for each language considered is named as KHiTEShabdanjali. The basic parameters cosidered for training dataset are pause, pitch, sampling frequency, threshold etc. Findings: The research has resulted in the development of mono-lingual and multi-lingual speech identification, tool for processing of cross-lingual speech and language identification, mono-lingual, bi-lingual, tri-lingual and quad-lingual speech to monolingual text translation for the four languages. It is a generic approach and can be used for other regional languages of India by training the corpus with the selected language. Novelty: Cross-lingual speech identification and text translation system helps users in e-shopping by reducing the time incurred in making a decision to purchase a product having enough features at an economical price, e-tutoring, e-farming activities, digitizing, defence etc.

Keywords: Artificial Neural Networks; Convulutional Neural Networks; Deep Neural Networks; HiddenMarkovModel; Speech Processing


  1. Locke S, Bashall A, Al-Adely S, Moore J, Wilson A, Kitchen GB. Natural language processing in medicine: A review. Trends in Anaesthesia and Critical Care. 2021;38:4–9. Available from: https://doi.org/10.1016/j.tacc.2021.02.007
  2. Zue V, Glass J, Goodine D, Leung H, Phillips M, Polifroni J, et al. Integration of speech recognition and natural language processing in the MIT VOYAGER system. In: ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. (Vol. 91, pp. 713-716) IEEE. 1991.
  3. Khurana D, Koli A, Khatter K, Singh S. Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications. 2023;82(3):3713–3744. Available from: https://doi.org/10.1007/s11042-022-13428-4
  4. Brennan A, Mcdonagh T, Dempsey M, Mcavoy J. Cosmic Sounds: A Game to Support Phonological Awareness Skills for Children With Dyslexia. IEEE Transactions on Learning Technologies. 2022;15(3):301–310. Available from: https://doi.org/10.1109/TLT.2022.3170231
  5. Ahmed T, Suffian M, Khan MY, Bogliolo A. Discovering Lexical Similarity Using Articulatory Feature-Based Phonetic Edit Distance. IEEE Access. 2022;10:1533–1544. Available from: https://doi.org/10.1109/ACCESS.2021.3137905
  6. Chodroff E, Wilson C. Acoustic–phonetic and auditory mechanisms of adaptation in the perception of sibilant fricatives. Attention, Perception, & Psychophysics. 2020;82(4):2027–2048. Available from: https://doi.org/10.3758/s13414-019-01894-2
  7. Yu F, Yao Z, Wang X, An K, Xie L, Ou Z, et al. The SLT 2021 Children Speech Recognition Challenge: Open Datasets, Rules and Baselines. In: 2021 IEEE Spoken Language Technology Workshop (SLT). (pp. 1117-1123) IEEE. 2021.
  8. Nadimpalli VLV, Kesiraju S, Banka R, Kethireddy R, Gangashetty SV. Resources and Benchmarks for Keyword Search in Spoken Audio From Low-Resource Indian Languages. IEEE Access. 2022;10:34789–34799. Available from: https://doi.org/10.1109/ACCESS.2022.3162854
  9. Sulaimani SA, Starkey A. Short Text Classification Using Contextual Analysis. IEEE Access. 2021;9:149619–149629. Available from: https://doi.org/10.1109/ACCESS.2021.3125768
  10. Rudrappa NT, Reddy MV, Hanumanthappa M. Standardized GUI Framework Using Python for Speech Processing: NLP. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). 2021;p. 1–4. Available from: https://doi.org/10.1109/ICECET52533.2021.9698522
  11. Reddy MV, Rudrappa NT. Advanced Code Switching Application-COVID-19. SSRN Electronic Journal. 2020. Available from: http://dx.doi.org/10.2139/ssrn.3735927


© 2023 Rudrappa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.